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We present the symbolic resonance analysis �SRA� as a viable method for addressing the problem
of enhancing a weakly dominant mode in a mixture of impulse responses obtained from a nonlinear
dynamical system. We demonstrate this using results from a numerical simulation with Duffing
oscillators in different domains of their parameter space, and by analyzing event-related brain
potentials �ERPs� from a language processing experiment in German as a representative applica-
tion. In this paradigm, the averaged ERPs exhibit an N400 followed by a sentence final negativity.
Contemporary sentence processing models predict a late positivity �P600� as well. We show that the
SRA is able to unveil the P600 evoked by the critical stimuli as a weakly dominant mode from the
covering sentence final negativity. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2795434�

In addition to the characteristic temporal nonstationarity
of impulse responses, dynamical systems exhibit another
type of nonstationarity that is due to fluctuations or slow
dynamics in parameter space. Both kinds are present in
physiological measurements where, on the one hand,
many realizations of noise-contaminated impulse re-
sponses have to be collected in order to increase the sig-
nal to noise ratio (SNR) by ensemble averaging, while, on
the other hand, intertrial nonstationarity that is caused
by changes in the system’s control parameter weakens
the SNR by damping the averaged impulse response and
increasing its variance. In this paper, we treat different
parameter-dependent impulse responses as modes that
eventually contribute to the ensemble average, and show
how weakly dominant modes can be enhanced by a sym-
bolic time series analysis method, called symbolic reso-
nance analysis. This approach takes advantage of the fact
that the noise inherent in the data causes stochastic reso-
nance effects in a threshold system. These resonances cor-
respond to the phase transitions in a particular spin lat-
tice that lead to a significant amplification of the SNR of
the dominant mode. We present numerical simulations of

the Duffing oscillator in two different regions of its pa-
rameter space. Finally, we apply the suggested method to
event-related brain potentials (ERP) from a language
processing experiment, where two antagonistic ERP com-
ponents prevented an unambiguous interpretation of the
analysis.

I. INTRODUCTION

Unlike in experimental physics,1 astronomy,2,3 or other
physical sciences, where almost stationary time series of suf-
ficient duration are often available, time series in the biologi-
cal sciences are usually short and nonstationary.4,5 This is
especially the case in neuroscience where the reactions of
neurons or neural networks upon particular stimuli can be
regarded as impulse responses. Examples are, currents
through single ion channels as measured in patch-clamp
experiments,6,7 receptor potentials,8 local field potentials,9

evoked or event-related brain potentials �ERP�,10–12 and
functional magnetic imaging �fMRI� data13,14 in psychophys-
ics and cognitive neuroscience.

Although impulse response functions are also well
known in the engineering and physical sciences, they are
usually treated within the framework of linear system theory,a�Electronic mail: p.r.beimgraben@reading.ac.uk
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where their relationship to the transfer function describing
the system’s response to periodic forcing is mathematically
given by the Laplace transform.11 However, less is known
about impulse responses of nonlinear dynamical
systems.15–17

By definition, impulse response functions are transients
and therefore temporally nonstationary. Nonlinear dynamical
systems that depend on a control parameter additionally ex-
hibit another kind of nonstationarity: For critical values, the
system is very sensitive to small random perturbations or
slow drifts in parameter space resulting in different qualita-
tive behaviors when measurements are repeated many times.
Yet, this is actually necessary in neurophysiological experi-
ments in order to improve the signal to noise ratio �SNR� of
the data by averaging over large ensembles of many time
series.10,18 Averaging across different impulse responses
which are due to fluctuations or drifts in parameter space,
however reduces the amplitudes and increases the variances
of the data, thus diminishing the SNR. Therefore, a tradeoff
between the impact of noise on short transient time series
and the problem of intertrial nonstationarity is unavoidable
in ensemble averages.

This can be nicely illustrated in the light of event-related
brain potentials �ERPs� in psychophysics and cognitive neu-
roscience. ERPs are commonly regarded to be tiny impulse
responses in the electroencephalogram �EEG� generated by
neural networks that are time-locked to the perception or
processing of stimuli and blended by the spontaneous EEG
that reflects the ongoing, continuous activity of the brain.10,18

As the typical ERP amplitude is in the range of 5–10 �V
which is at least one order of magnitude smaller than the
background EEG, one usually repeats the stimulus presenta-
tion between 30 and 1000 times per subject and averages
across “epochs” that are time-locked to the stimulus. The
single-subject ERPs obtained from 10 to 30 subjects are fur-
ther averaged into the grand averages which display several
peaks with distinct polarity, latency �the time of the maximal
deflection�, morphology, and topography. The conventional
terminology takes all of these parameters into account and
names ERP components according to their polarity and la-
tency time, such as P300 �a positivity, 300 ms after stimulus
onset�, N400 �a negativity, 400 ms after stimulus onset�, or
P600 �a positivity, 600 ms after stimulus onset�, all with
rather long duration and broadly distributed over parietal re-
cording sites at the scalp. The latter two components are
related to language processing problems in the semantic and
syntactic domain, respectively. The N400 is elicited by se-
mantically odd sentence continuations such as in “he spread
the warm bread with socks.”19 The P600, on the other hand,
occurs in sentences like “the broker persuaded to sell the
stock” where the critical stimulus “to” cannot be integrated
into a syntactic representation of the sentence that has al-
ready been built up because “persuaded” is a transitive verb
requiring a direct object �such as “the shareholder”� instead
of a sentence complement as indicated by “to.”20 For reviews
on language processing ERP research, see Refs. 21–24.

Following Başar11,12 and beim Graben et al.,25 ERPs can
be interpreted in the framework of dynamical system theory
as follows: The measurable EEG maps the phase space of the

brain onto a multivariate observable space such that single
ERP epochs are represented by transient trajectories explor-
ing this low-dimensional space that start from randomly dis-
tributed initial conditions, each one corresponding to one
repetition of the experiment. These trajectories, which can be
seen as impulse responses, depend on fluctuating or changing
control parameters: First of all, in each ERP experiment one
has to designate the control and the critical conditions which
correspond to fixed domains in parameter space. Moreover,
different subjects participating in an ERP experiment may
employ different strategies to cope with the tasks.26–28 These
between-subject differences have to be taken into account
when making the grand average analysis. Finally, when con-
ducting an ERP experiment, each single subject may undergo
slow changes in attention, habituation, learning, fatigue,
etc.29–32

To discuss an example, Osterhout �Ref. 26, Exp. 2� in-
vestigated the processing of sentences of the kind “the boat
sailed down the river sank during the storm” in comparison
to sentences such as “the boat sailed down the river and sank
during the storm.” While the latter is syntactically normal,
the former elicits a processing problem at the critical word
�in bold� as it is not expected by the sentence context. In-
stead, a costly reanalysis is required to realize that “the boat
sailed down the river” has to be analyzed as a reduced rela-
tive clause “the boat �that� sailed down the river.” The sen-
tence becomes completely acceptable after this revision.
However, as the sentence appears to be syntactically anoma-
lous, it also entails semantic interpretation problems. There-
fore, a “biphasic” pattern of an N400, followed up by a P600
was observed in the grand average ERP. Yet, inspecting the
single-subject averages revealed individual processing differ-
ences: one subject group, exhibiting only an N400, presum-
ably pursued a semantic strategy, whereas another group
which employed a syntactic strategy, produced the P600 in
the ERP �for similar findings, see Refs. 27 and 28�. This
example does clearly demonstrate that impulse responses
could spuriously superimpose in the average although they
are due to different control parameters in the single trials.
With respect to ERP analysis, the example is less problem-
atic for the components with different latencies. Even worse
is the case when components with similar spatio-temporal
characteristics superimpose in the average.

For decomposing signals into independent sources,
methods of blind source separation �BSS�, such as principle
component analysis �PCA, e.g., Ref. 33� or independent
component analysis �ICA, e.g., Ref. 34� became recently
popular for EEG/ERP analysis.35–39 BSS techniques are de-
voted to solve the so-called cocktail-party problem where
signals from different sources are blended to a noisy gossip.
By recording this mixture from a multitude of sensors, BSS
is able to reconstruct the original signals. However, the ICA
model is comprised of four essential requirements:40,41 �1�
The source signals superimpose linearly and instantaneously,
i.e., signal propagation times or convolutive mixing pro-
cesses should be negligible. �2� The sources are spatially
fixed and do not move �spatial stationarity�. �3� The source
signals are �maximally� temporally independent. �4� The
sources have non-Gaussian distributions. These prerequisites
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have to be fulfilled only weakly. Meinecke et al.,42 e.g.,
showed that ICA successfully decomposes nonindependent
but rather phase-synchronized signals; while Anemüller et
al.43 suggested complex ICA as a generalization that is able
to cope with frequency-dependent superposition coefficients
and convolutive mixing.

The separation of overlapping ERP components in aver-
aged ERP signals by means of ICA has been demonstrated
by Makeig et al.44,45 Makeig et al.,35 Jung et al.,38 and De-
bener et al.39 have suggested decomposing single-trial ERPs
by concatenating the ERP epochs from all experimental con-
ditions and then running ICA on these data streams obtained
from each subject separately. However, this procedure is jus-
tified only when almost all ERP epochs consistently exhibit
the same mixture of overlapping ERP components. Then,
their concatenation will result in an almost stationary time
series that can be subjected to the ICA algorithm. By con-
trast, in our case when one portion of ERP epochs contains
one component and another portion contains another one �as
in Osterhout26�, the concatenation procedure would yield a
signal lacking requirement �2�, namely spatial stationarity.
This can be illustrated by imagining a cocktail party where
nonmoving guests start singing a canon. Although the
sources are spatially fixed, their signals are not, they are
moving around. In a similar way, the concatenation of differ-
ently behaving ERP epochs, where one portion contributes,
e.g., a P600 while another portion contributes, e.g., an N400,
provides a spatially nonstationary data stream. The applica-
bility of ICA to such nonstationary data is at least question-
able.

This paper addresses such issues of nonstationarity. In
Sec. II, we model an ensemble of noisy data that comprises
two different transient impulse responses occurring in differ-
ent proportions. We show that the recently suggested sym-
bolic resonance analysis �SRA� �Refs. 46–49� is not only
able to detect the impulse response functions covered by ad-
ditive noise, but moreover, that a prevalent impulse response
function is significantly enhanced, even if it is only weakly
dominant, thus improving the SNR of the data. In Sec. III,
we apply the method to neurophysiological data from a lan-
guage processing experiment, where two different compo-
nents were intermingled in the averaged ERP, yet one as a
weakly dominant mode. We conclude with a final discussion
in Sec. IV.

II. THE SYMBOLIC RESONANCE ANALYSIS

A. Concepts

Our method, the symbolic resonance analysis �SRA�, be-
longs to the wide class of symbolization �coarse-graining�
methods that have been devised for the analysis of nonsta-
tionary time series.4,25,50–55

Let us assume that an ensemble of N measured time
series xi�t� of duration T �1� i�N ;1� t�T� is composed
from K different impulse response functions sk�t� �1�k
�K�, each occurring Nk times, superimposed with i.i.d.
white noise,

xi�t� = ski
�t� + �i�t� , �1�

where ki� �1,2 , . . . ,K� for i�N tells which impulse re-
sponse is contained in the ith realization of the stochastic
process with random component �i�t� ���i�t��=0, ��i�t�2�
=�2, �·� denoting the ensemble average�.

Since the components sk�t� contribute to the averaged
impulse response,

r�t� =
1

N
	
i=1

N

xi�t� = 	
k=1

K

qksk�t� , �2�

with the weight qk=Nk /N, we call them modes of the aver-
aged impulse response. The dominant mode sd�t� is that
mode that is most often realized within the ensemble of time
series, Eq. �1�, with weight qd�qk for all k�d. We call sd�t�
weakly dominant if the dominant mode is present in about
60% of realizations.

Basically, the SRA relies upon the cooperative interplay
between the noise and a nonlinear threshold crossing detec-
tor of a symbolic dynamics with three symbols.46,56,57 The
first step is a coarse-graining of the time series, Eq. �1�, after
choosing a certain threshold �, according to

Sit = 
a0 : xi�t� � − �

a1 : �xi�t�� � �

a2 : xi�t� � � ,

�3�

where a0= “0”, a1= “1”, a2= “2” are the arbitrarily chosen
symbols of the coarse-graining.

The symbolically encoded time series then form an array

E = �
S11 S12 S13 ¯ S1T

S21 S22 S23 ¯ S2T

   ¯ 
SN1 SN2 SN3 ¯ SNT

� �4�

of symbols Sij comprising N rows �the number of realiza-
tions� and T columns �the number of sampling points in
time�.

From E the three-symbol distribution �j=0,1 ,2�

pj�t� =
#�aj�t��

N
�5�

is determined. Here, #�·� denotes the counting function ap-
plied to the symbol aj at time t.

These symbol distributions are subjected to a spin-flip
dynamics where the mean-fields of two competing Potts
spins58

M0�t� = p0�t� − p1�t� ,

�6�
M2�t� = p2�t� − p1�t�

try to flip the “undecided” between-threshold symbol “1”
into either “0” or “2” leading to a distribution of only two
symbols
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p0��t� = 
p0�t� : M2�t� � 0 � M0�t�
p0�t� + p1�t� : M2�t� � 0 � M0�t�
p0�t� + p1�t�/2 : otherwise,

�7�
p1��t� = 1 − p0��t� .

Thereby, the phase transitions of this symbolic dynamics
considered as a �1+1�-dimensional Potts spin lattice58 corre-
spond to the instances of aperiodic stochastic resonance59 in
the threshold system.56,57 Note that we use here a slightly
modified definition of the mean-fields compared to that given
in Ref. 46, Eq. �5�, in order to highlight the competition
between the “0”s and the “2”s for the “1”s.

According to Eq. �7�, the transformed word statistics
pj��t� reflect the dominant mode sd�t� in the ensemble, Eq.
�1�, which causes one mean-field, either M0�t� or M2�t� to
win the competition for the “1”s.

B. Simulations

In our simulations we studied the impulse response func-
tions of the nonlinear Duffing oscillator60 that has been sug-
gested as a model for evoked brain potentials.61 The system
obeys the differential equation

s̈ + 	ṡ − 
s − s3 = 0 �8�

with control parameters 	 �damping� and 
 �“spring con-
stant”�. For 	�0, the system undergoes a pitchfork bifurca-
tion from one stable fixed point s*=0 for 
�0 that destabi-
lizes at 
=0 generating two stable fixed points s*= ±�
 for

�0.60

For the sake of simplicity, we simulated Eq. �8� with
only two different settings: �1� 
1=−1 and �2� 
2= +0.1, i.e.,
the attractors were s*=0 and s*= ±0.32, while 	=1 has been
kept constant during the simulations. Furthermore, we al-
ways used the same initial condition �s , ṡ�= �1,1� in order to
avoid phase and therefore latency fluctuations.62,63 The solu-
tions s1�t�, s2�t� of Eq. �8� for the different parameter settings
were superimposed with zero-mean Gaussian white noise
with different variances �2 according to Eq. �1�. The en-
sembles of size N=500 were generated with three mixture
ratios q=0.6,0.7, and 0.8, where s1�t� was taken as the domi-
nant mode. To this end, qN replicas of s1�t� and �1−q�N
replicas of s2�t� with random indices ki entered the ensemble
Eq. �1�. Additionally, two “pure” ensembles consisting only
of s1�t� �q=1� or s2�t� �q=0�, respectively, superimposed
with noise were created for the purpose of comparison.

Figure 1 displays the transient impulse responses s1�t�
�solid line�, s2�t� �dotted line�, and the ensemble average r�t�,
Eq. �2�, �dashed line� for a noise intensity of �2=0.6. Addi-
tionally, the empirical standard deviation �dot-dashed line� of
the ensemble, Eq. �1�, is shown. The mixture ratio is q=0.6
for Fig. 1�a�, q=0.7 for Fig. 1�b�, and q=0.8 for Fig. 1�c�.
Obviously, the averaged impulse response tends towards s1

for increasing q from Figs. 1�a�–1�c�.
For the SRA, the ensembles, Eq. �1�, were subjected to

the symbolic encoding, Eq. �3�, with threshold �=0.35 which
is slightly larger than the height of the first local minimum of
s1�t� around t=3. Superimposed noise will therefore entail

highly probable threshold crossing events, i.e., stochastic
resonance, thus preparing this peak for evaluation. Employ-
ing Eq. �3� yielded the arrays, Eq. �4�. Figure 2�a� presents a
visualization for �2=0.6,q=0.8, corresponding to Fig. 1�c�
where black pixels denote “0,” gray “1,” and white “2.”

FIG. 1. Transient impulse responses s1�t� �solid line�, s2�t� �dotted line� of
the Duffing oscillator, Eq. �8�, and the ensemble averages r�t�, Eq. �2�,
�dashed line� and their respective empirical standard deviations �dot-dashed
line� from the mixtures, Eq. �1�, with noise level �2=0.6 and mixture ratios
�a� q=0.6, �b� q=0.7, �c� q=0.8 of the dominant mode s1�t�.
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�Such visualizations, introduced by beim Graben et al.,25 are
similar to the “ERP images” in the continuous signal
range.35,36�

The distribution of “0”s, “1”s, and “2”s �Eq. �5�� for the
same simulation is plotted in Fig. 3�a�.

Next, the three-symbol distribution, Eq. �5�, is subjected
to the mean-field transform, Eq. �7�, regarding the symbolic
dynamics, Eq. �4�, as a �1+1�-dimensional Potts spin
lattice.58 The resulting distribution of two symbols “0” and
“1” �formerly “2”� obeys the normalization constraint p0��t�
+ p1��t�=1. For illustration, both functions are displayed in
Fig. 3�b�. Apparently, the three-symbol distribution pj�t�
�Fig. 3�a�� is monotonically deviating from the uniform one
around t=3 as there are more “0”s than “1”s and more “1”s

than “2”s. Hence, the mean-field M0�t� won the competition
and all “1”s were flipped into “0”s as shown in Fig. 3�b�.

Although the mean-field transform, Eq. �7�, applies di-
rectly to the word statistics, its action upon the symbolic
dynamics can also be visualized as in Fig. 2�b�. Here the
spin-flip dynamics is easily recognized; all gray pixels have
been converted either into white or black ones according to
the competition between the mean-fields, Eq. �6�. Again, the
mean-field transform, Eq. �7�, maps monotonic deviations
from the uniform distribution onto nonuniform distributions.
Conversely, all other distributions are mapped onto the uni-
form distribution of two symbols by flipping half of the “1”s
into “0”s and the other half into “2”s. To create the visual-
ization Fig. 2�b�, the particular “1”s were chosen randomly
from both halves. As a result, the local minimum of the
dominant mode s1�t� around t=3 is represented by a black
vertical stripe across all trials in the symbolization.

It is clear from the definition of the mean-field trans-
form, Eq. �7�, that all “1”s are flipped either into “0” or into
“2” if there is one mean-field, either M0�t�, or M2�t�, winning
the competition. This is especially the case, if a dominant
mode prevails the ensemble, Eq. �1�. In order to demonstrate

FIG. 2. Symbolic dynamics, Eq. �4�, of �a� the symbolically encoded en-
semble, Eq. �1�, from Fig. 1�c� with �2=0.6, q=0.8. Black pixels denote
“0,” gray “1,” and white “2.” �b� The same ensemble after the mean-field
transform, Eq. �7�.

FIG. 3. Symbol distributions �word statistics� �a� pj�t� �Eq. �5�� as relative
column frequencies from the ensemble, Eq. �1�, shown in Fig. 2�a�, solid
line: p0�t�; dotted line: p1�t�; dashed line: p2�t�. �b� pj��t� after the mean-field
transform, Eq. �7�; solid line: p0��t�; dashed line: p1��t� �cf. Fig. 2�b��.

043106-5 Enhancing dominant modes Chaos 17, 043106 �2007�

Downloaded 22 Oct 2007 to 141.89.100.57. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



this effect, we subsequently present results from our simula-
tions with different mixture ratios, q=0.6,0.7,0.8 and differ-
ent noise intensities, �2=0.4,0.6,0.8.

Figure 4 presents the mean-field transformed frequencies
p1��t� and both, the dominant mode s1�t� and the nondominant

mode s2�t� of Eq. �8� after applying the SRA to their word
statistics obeyed from the “pure” ensembles for the noise
level �2=0.4 for comparison. For Fig. 4�a� q=0.6, Fig. 4�b�
q=0.7, Fig. 4�c� q=0.8. Since the SRA has been optimized
by choosing �=0.35, p1��t� fits the corresponding probability
obtained from the “pure” ensemble of s1�t� only for q=0.8
�Fig. 4�c��. The correspondence for q=0.6 and q=0.7 �Figs.
4�a� and 4�b�� is rather poor, yet.

This changes, however, by increasing the noise intensity
to �2=0.6 as shown in Fig. 5. As indicated by Fig. 5�a�, even
the lowest mixture ratio of q=0.6 provides a good detectabil-
ity of this weakly dominant mode that further increases with
higher q �Figs. 5�b� and 5�c��.

Nevertheless, the situation looks different again when
the noise becomes too strong as shown in Fig. 6, where �2

=0.8. In this case, the dominant mode remains hidden as
long as q=0.7 or larger �Figs. 6�b� and 6�c��.

These results illustrate that even weakly dominant
modes in a nonstationary ensemble of impulse responses can
be enhanced by the SRA when additive noise and an opti-
mally chosen encoding threshold cause a cooperative inter-
play between competing modes and hence stochastic reso-
nance in the symbolic threshold system.

III. THE EXPERIMENT

Here we report results of an experiment testing particular
language processing problems in German that are evoked by
so-called negative polarity items �NPIs� such as adverbs like
“ever” or phrases, like “not in the least” or “to lift a finger”
that appear in sentences like “nobody lifted a finger to help
me.” These peculiar items have to occur in the semantic
context of negation to be syntactically licensed.64

In an ERP experiment we tested negative polarity items
in German such as jemals �“ever”� that were correctly li-
censed by a negator kein �“no”� against sentences without
any negation. Table I displays examples for both conditions:
In the correct condition �COR� a licensor is present whereas
the structure is incorrect when there is no licensing negation
�INC�.

As predicted upon linguistic theory, previous studies on
the processing of NPIs have shown that an unlicensed NPI
elicits a biphasic N400/P600 response in the ERP.49,65,66 Al-
though Saddy et al.67 reported only an N400 ERP effect for
the processing of unlicensed NPIs, a post-hoc analysis of
these data by our symbolic resonance analysis revealed also
a significant P600.49 We therefore expect a similar N400/
P600 pattern in the ERPs of the present study. However, as
can be seen in the sentence examples shown in Table I, the
NPI jemals �“ever”� is the next to last word followed by the
concluding adjective �such as traurig �“sad”��. It is well-
known from the literature that the terminating word of a
sentence gives rise, under certain circumstances, to a large
slow negative wave in the ERP, the sentence final negativity
�SFN�.20,26,68 This component can override and hide a late
P600 elicited by the preceding word.21,69 This state of affairs
is a concrete example of a weakly dominant mode within a
mixture of impulse response functions.

FIG. 4. The relative frequency p1��t� �dashed line� after the mean-field trans-
form Eq. �7� in comparison to the corresponding functions of the dominant
mode s1�t� �solid line� and of the nondominant mode s2�t� �dotted line� of
Eq. �8� for the ensemble, Eq. �1�, with noise strength �2=0.4 for mixture
ratios: �a� q=0.6, �b� q=0.7, �c� q=0.8.
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A. Materials and methods

Sixteen undergraduate students �mean age 19 years, nine
females� from the University of Potsdam participated in the

ERP study after giving informed consent. All were right-
handed and had normal or corrected-to-normal vision.

Each subject read a total of 160 sentences in a pseudo-
randomized order in which 80 critical sentences �40 per con-
dition, see Table I� were intermixed with 80 related fillers.

FIG. 5. The relative frequency p1��t� �dashed line� after the mean-field trans-
form, Eq. �7�, in comparison to the corresponding functions of the dominant
mode s1�t� �solid line� and of the nondominant mode s2�t� �dotted line� of
Eq. �8� for the ensemble, Eq. �1�, with noise strength �2=0.6 for mixture
ratios: �a� q=0.6, �b� q=0.7, �c� q=0.8.

FIG. 6. The relative frequency p1��t� �dashed line� after the mean-field trans-
form, Eq. �7�, in comparison to the corresponding functions of the dominant
mode s1�t� �solid line� and of the nondominant mode s2�t� �dotted line� of
Eq. �8� for the ensemble, Eq. �1�, with noise strength �2=0.8 for mixture
ratios: �a� q=0.6, �b� q=0.7, �c� q=0.8.
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All critical sentences consisted of main clauses. The negator
appeared in the correct condition �COR� and the incorrect
condition �INC� did not contain negation.

After a set of 20 training sentences �five in each of the
critical conditions�, all sentences were presented in the center
of a 17 in. computer screen, with 400 ms �plus 100 ms blank
screen resulting in 500 ms interstimulus interval� for the ini-
tial subject phrase and for each of the other words in isola-
tion. 500 ms after the last word of each sentence, subjects
had to judge its well-formedness within a maximal interval
of 3000 ms by pressing one out of two buttons. 1000 ms
after their response, the next trial began.

The EEG was recorded by means of 25 Ag/AgCl elec-
trodes mounted according to the 10-20 system70 with a sam-
pling rate of 250 Hz �impedances �5 k�� and was refer-
enced to the left mastoid �re-referenced to linked mastoids
offline�. EOG was monitored to control for eye-movement
artifacts.

B. Data analysis

For the ERP analysis only artifact-free trials �520 and
511, for COR and INC, respectively, determined by visual
inspection� with correct answers in the judgement task were
selected. Epochs from −200 to 1400 ms relative to the pre-
sentation of the NPI were baseline corrected by subtracting
the time average of the prestimulus interval. Mean ERPs
were computed for each subject and condition and subse-
quently averaged into the grand averages. For statistical
treatment, single-subject ERPs were time-averaged in two
time windows: I from 300 to 500 ms according to the ex-
pected N400, and II from 800 to 1000 ms with respect to the
expected late positivity in accordance with Drenhaus et
al.49,65,66 Repeated measures ANOVA for the expected ERPs
�N400 in window I and P600 in window II� was performed
with the factor VIOLATION for each of the three midline elec-
trodes FZ, CZ, and PZ as well as for each of the following
four lateral regions of interest �ROI�: left-anterior �F7, F3,
FC5�, right-anterior �F8, F4, FC6�, left-posterior �P7, P3,
PO3�, and right-posterior �P8, P4, PO4�.

The EEG data have been preprocessed in the same way
as for the voltage averaging, namely re-referenced and base-
line aligned, before they entered the SRA as described in
Sec. II.46–49 The ith EEG epoch xik

�s,c��t� contributed by sub-
ject s, experimental condition c, and electrode k �t denotes
the sampling point in time� is symbolically encoded into a
string of three letters “0,” “1,” “2” by the encoding rule Eq.
�3� with respect to a temporarily fixed voltage threshold �. In
a first step, all symbolic strings obtained in that way are

collected into the grand epoch ensemble �GEE�, Eq. �4�.
From these ensembles the relative frequency pi

GEE�t� of the
ith symbol at the instance of time t and across all epochs �Eq.
�5�� is determined �where we omit condition and electrode
indices subsequently; subject and epoch indices are already
lost after forming the GEE�.

These three-symbol distributions �the “polarity histo-
grams” in the sense of Callaway and Halliday29� are then
subjected to the mean-field transform, Eq. �7�, where the
algorithm detects peaks in the symbol distributions by revert-
ing the between-threshold symbol “1” either into “0” or into
“2.” In the next step, an estimator of the signal to noise ratio
�SNR� within two particular time windows T= toff− ton was
computed from the cylinder entropies25 of the mean-field
transformed word statistics

H�t� = − p0�
GEE�t�log2 p0�

GEE�t� − p1�
GEE�t�log2 p1�

GEE�t� . �9�

The SNR is then given by46,62

S = 0.5883� 1

1/T	tH�t�
− 1� , �10�

measuring the deviation of the mean-field transformed sym-
bol statistics from the uniform distribution. It is high if the
frequency of either “0”s—indicating a negative peak—or
“2”s—reflecting a positive peak—in the ensemble of ERP
epochs is much larger then the frequency of its counterpart.
On the other hand, the SNR estimator is low if neither “0”s,
nor “2”s had won the competition for the “1”s in the mean-
field transform. Therefore, the absence of any peak in the
ERP is represented by an almost uniform distribution of the
transformed symbols “0” and “1” �previously denoted as
“2”� exhibiting a low SNR. The SNR estimator is computed
for the same time windows I: 300–500 ms and II: 800–
1000 ms as for the ANOVA of the voltage ERPs.

Unlike in our simulations where the optimal threshold
was explicitly given by the height of the peak of the domi-
nant mode, there is no indication as to what such a threshold
might be for experimental data. Therefore, a search in pa-
rameter space is necessary. To this end, the above mentioned
procedure �choosing a threshold �, followed by symbolic en-
coding, applying the mean-field transform, and determining
the SNR� is repeated for a range of encoding thresholds start-
ing with 2.5 to 12.0 �V in steps of 0.1 �V, such that to
every threshold value � a corresponding SNR value S��� is
assigned. Plotting these functions for the experimental con-
ditions c1 vs c2 yields characteristic curves that indicate the
phenomenon of aperiodic SR in the threshold detector.46–49,57

The optimal threshold �# is then given by the maximal
modulus of the difference of two resonance curves for two
experimental conditions48

�# = arg max
�

�S�c1���� − S�c2����� . �11�

These values are determined for every electrode separately.
Using these thresholds, presented in Table II for the nine
electrodes plotted in the figures, the GEEs obtained for the
respective optimal thresholds are rearranged in order to cre-
ate a new, optimal, GEE that contains for each electrode its
particular optimally encoded symbol array. The statistics of

TABLE I. Sample stimuli for each of the two experimental conditions. The
critical words are printed in bold font.

Condition Example

COR Kein Mann war jemals traurig.
No man was ever sad.

INC Ein Mann war jemals traurig.
A man was ever sad.
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“0” �denoting negative voltage deflections� and “1” �denot-
ing positive voltage deflections� �Eq. �5�� after the mean-field
transform, Eq. �7�, is comparable to the traditional ERP
waveforms. Note that the relative frequencies of “0”s and
“1”s sum to unity after the transform. Therefore, it is suffi-
cient to plot only one of these functions for comparison be-
tween experimental conditions.

In order to employ repeated measures ANOVA, we need
SRA results from each single subject. To this end, single-
subject ensembles �Eq. �4�� are built like the optimal GEEs
above. From these, the symbol distributions for subject s,
pi

�s��t� are derived according to Eq. �5�. These single-subject
distributions enter a modified mean-field transform, where
the GEE distributions pi

GEE�t� in Eq. �7� have to be replaced
by their single-subject counterparts where the mean-fields of
the optimal GEE act now collectively on the symbol distri-
butions of each subject separately,

p0�
�s��t� = 
p0

�s��t� : M2�t� � 0 � M0�t�
p0

�s��t� + p1
�s��t� : M2�t� � 0 � M0�t�

p0
�s��t� + p1

�s��t�/2 : otherwise,

�12�
p1�

�s��t� = 1 − p0�
�s��t� .

The resulting mean-field transformed single-subject symbol
distributions are time averaged in the same windows I and II
as the mean ERPs and subsequently subjected to the
ANOVA.

C. Results

1. Voltage averages
Figure 7 displays the grand average ERPs for the condi-

tions COR �correctly licensed NPI� and INC �incorrect� at
nine electrode sites.

The ungrammatical sentences INC elicit an N400. At
times later than 800 ms the violation condition INC exhibits
an anteriorly pronounced sentence final negativity shown at
electrodes F7, FZ, and F8. At parietal sites �PO3, PZ, P04�
the ERP for the INC condition is more positive compared to
the COR condition. This suggests the expected confound of a
very late P600 blended with the sentence final negativity in
the epochs ensemble. The statistical analysis given in Table
III reveals that the difference between both conditions is only
significant at electrode FZ and the anterior ROIs where INC
is more negative than COR. At parietal electrodes the super-
position of the sentence final negativity with the P600 pre-
vents any statistically reliable difference.

2. Symbolic resonance analysis
The SRA provides two sets of optimal thresholds �Table

II� and their associated symbol distributions. We plot the
probabilities p0�

GEE�t� which denote resonant threshold cross-
ing events with negative polarity obtained for the optimal
thresholds from the N400 window I for both conditions COR
and INC in Fig. 8. Correspondingly, Fig. 9 shows the fre-
quencies p1�

GEE�t�, i.e., the probabilities to observe resonant
threshold crossing events with positive polarity �originally
encoded as “2”� for the optimal thresholds from the P600
window II for both conditions COR and INC. Note that base-
line problems, apparently present in the ERP voltage aver-
ages in Fig. 7, are suppressed by the SRA �Figs. 8 and 9�
because these fluctuations do not give rise to stochastic reso-
nance effects in the threshold ranges of the proper ERP
components.

The N400 is highly amplified by the SRA analysis. This
is also reflected by the results of the ANOVA applied to the
mean-field filtered symbol distributions �Table IV�.

More interesting, however, are the distributions of the
mean-field transformed “1”s optimized for the late time win-
dow II. The COR condition contributed only a small number
of trials with positive polarity �around 0.25 at electrodes P8,
PO3, PO4� thus indicating that the “0”s �resonant negative
voltages� won the competition for the “1”s against the “2”s.

FIG. 7. ERP voltage averages for the
conditions �COR� �bold line� and
�INC� �thin line� at nine electrodes.
Time onset of the critical stimulus �the
NPI� at 0 s. The N400 ERP compo-
nent is indicated by the arrows. Wave-
forms are filtered with a 10 Hz low-
pass filter for better visibility.
According to an electrophysiological
convention, negativity is plotted
upwards.

TABLE II. Optimal encoding thresholds �in �V� for the nine selected elec-
trodes determined from the SNR of the two time windows I: 300–500 ms
�N400� and II: 800–1000 ms �P600�.

Window F7 FZ F8 P7 CZ P8 PO3 PZ PO4

I: 300–500 ms �N400� 4.5 7.1 6.3 6.6 5.6 6.9 7.3 6.5 3.4
II: 800–1000 ms �P600� 5.0 6.6 7.0 7.1 7.5 8.0 8.0 6.1 4.9
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TABLE III. Results of a repeated measures ANOVA for the mean ERPs. “SFN” stands for an effect due to the
sentence final negativity.

Window I: 300–500 ms Window II: 800–1000 ms

F p F p

Midline
VIOLATION 19.57 �0.001 �1 n.s.
VIOLATION� ELECTRODE 1.8 n.s. 12.14 �0.001
FZ 4.56 �0.05 8.17 �0.05 �SFN�
CZ 19.54 �0.001 �1 n.s.
PZ 3.22 n.s. 3.26 n.s.

Lateral
VIOLATION 13.37 �0.01 �1 n.s.
VIOLATION� REGION �1 n.s. 21.22 �0.001
VIOLATION� HEMISPHERE �1 n.s. �1 n.s.
VIOLATION� REGION� HEMISPHERE 4.78 �0.05 �1 n.s.
Left-anterior 2.59 n.s. 12.28 �0.01 �SFN�
Right-anterior 6.54 �0.05 9.24 �0.01 �SFN�
Left-posterior 29.87 �0.0001 1.29 n.s.
Right-posterior 9.78 �0.01 1.69 n.s.

FIG. 8. Relative frequencies of trials
with beyond-threshold negative polar-
ity �“0”s� obtained for the respective
optimal encoding thresholds of the
nine selected electrodes �see Table II�
after mean-field transform. Bold line:
correct condition �COR�; thin line: in-
correct condition �INC�. The N400
ERP component is indicated by the ar-
rows. Waveforms are filtered with a
10 Hz low-pass filter for better
visibility.

FIG. 9. Relative frequencies of trials
with beyond-threshold positive polar-
ity �“1”s� obtained for the respective
optimal encoding thresholds of the
nine selected electrodes �see Table II�
after mean-field transform. Bold line:
correct condition �COR�; thin line: in-
correct condition �INC�. The P600
ERP component is indicated by the ar-
rows. Waveforms are filtered with a
10 Hz low-pass filter for better
visibility.
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On the other hand, this competition ended in a draw for the
unacceptable INC condition. After the transform there were
almost the same numbers of “0”s and “1”s at channels P8
and PO3 meaning that the original distribution of “0”s was
not strong enough to flip the “1”s into “0”s, while the “2”s
obviously won the competition at PO4 �see Fig. 9�. The sym-
bol distributions of the SRA therefore allow us to conclude
that the sentence final negativity was not present in the ma-
jority of EEG epochs and that a confounding P600 prevented
it from winning the competition of the spin-flip dynamics.
Table IV confirms this finding by means of the statistical
analysis. The sentence final negativity clearly dominates at
all midline electrodes FZ, CZ, and PZ, as well as at anterior
ROIs, while the P600, the weakly dominant mode, is stron-
ger at posterior ROIs.

IV. DISCUSSION

In this paper, we demonstrated through numerical simu-
lations and via experimental data how a recently developed
data analysis technique, the SRA,46–49 is able to enhance
dominant modes in ensembles of noisy time series that are
nonstationary in two different aspects: first, temporal nonsta-
tionarity as is characteristic for impulse responses, and sec-
ond, nonstationarity across the trial dimension that is due to
fluctuations or gradual variations in the system’s control
parameters.

For the numerical simulations we investigated the im-
pulse responses of the Duffing oscillator60,61 in two param-
eter domains, this side of and beyond the pitchfork bifurca-
tion. The system was contaminated with observational noise
facilitating the occurrence of stochastic resonance in a sym-
bolic dynamics with three symbols. For a critical noise level,
the dominant mode became detectable even for a mixture
ratio of 60%.

On the other hand, we used a language processing ex-
periment, where two different modes in the voltage average
were elicited, as a representative ERP paradigm: the P600
found in previous ERP studies with similar experimental
manipulations,49,65,66 and, the sentence final negativity,26,71

evoked by the last word of the stimulus sentences following
the critical word. An interaction of a late positivity and the
sentence final negativity can arise if they are elicited by ad-
jacent items.21,72 They may also interact when they are elic-
ited by one and the same item �i.e., critical item in sentence
final position69�. In the present experiment, the problem
seems to be that the P600 effect on the penultimate word is
particularly late, thus reaching into the rather early negativity
effect on the sentence final element.

By applying the SRA to the data of the present experi-
ment, we revealed the superposition of the late positivity
related to the processing of the critical stimuli, namely the
negative polarity items, with the sentence final negativity
evoked by the concluding word. The SRA showed that this
superposition was due to differences in the intertrial coher-
ences. Almost one half of the ERP epochs contributed to the
late positivity while the other half contributed to the sentence
final negativity. We found that the late positivity was a
weakly dominant mode at right-parietal electrodes in the op-
timal encoding.

Our results are consistent with the interpretation of ERPs
in terms of dynamical system theory11,12 and experimental
findings on single-trial variability in the ERP �Refs. 30–32
and 73–76� which can be seen as motion in parameter space.
Especially, changes in the ERP that are related to habituation
or learning would correspond to drifting control parameters.

Beyond the application presented here, the SRA could
also be of significance for the analysis of any ensemble of
noisy and nonstationary time series which are time-locked to

TABLE IV. Results of a repeated measures ANOVA for the distributions of the symbol “0” obtained from the
SRA for the optimal thresholds for window I and for the distributions of the symbol “1” obtained from the SRA
for the optimal thresholds for window II. “SFN” stands for an effect due to the sentence final negativity while
“P600” denotes an effect due to the P600.

Window I: 300–500 ms Window II: 800–1000 ms

F p F p

Midline
VIOLATION 63.82 �0.0001 47.65 �0.0001 �SFN�
VIOLATION � ELECTRODE 59.20 �0.0001 8.59 �0.01
FZ 23.87 �0.001 36.52 �0.0001 �SFN�
CZ 8.7 �0.05 58.70 �0.0001 �SFN�
PZ 117.9 �0.0001 22.96 �0.001 �SFN�

Lateral
VIOLATION 65.78 �0.0001 1.95 n.s.
VIOLATION � REGION �1 n.s. 170.16 �0.0001
VIOLATION � HEMISPHERE �1 n.s. 19.4 �0.001
VIOLATION � REGION � HEMISPHERE 11.42 �0.01 4.22 0.06
Left-anterior 21.71 �0.001 67.13 �0.0001 �SFN�
Right-anterior 35.86 �0.0001 50.9 �0.0001 �SFN�
Left-posterior 78.71 �0.0001 7.14 �0.05 �P600�
Right-posterior 66.77 �0.0001 55.41 �0.0001 �P600�
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certain events. This is particularly the case for ion currents
obtained from patch-clamp measurements,6,7 receptor
potentials,8 local field potentials,9 functional magnetic
imaging,13,14 or even ERPs—especially for clinical applica-
tions where inhomogeneous distributions of components
across trials are to be expected such as for aphasics or chil-
dren with language acquisition impairments.
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