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Abstract We construct a mapping from complex recur-
sive linguistic data structures to spherical wave functions

using Smolensky’s filler/role bindings and tensor product

representations. Syntactic language processing is then
described by the transient evolution of these spherical

patterns whose amplitudes are governed by nonlinear order

parameter equations. Implications of the model in terms of
brain wave dynamics are indicated.
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Introduction

Human language processing is accompanied by modula-
tions of the ongoing electrophysiological brain waves. If

these are evaluated in a stimulus-locked manner (cf. the

contributions of Fründ et al. and Kiebel et al. in this special
issue), one speaks about event-related brain potentials that

reflect syntactic (Osterhout and Holcomb 1992; Friederici
1995), semantic (Kutas and Hillyard 1980, 1984) and also

pragmatic (Noveck and Posada 2003; Drenhaus et al.
2006) processing problems.

Modeling human language processing has previously

relied mostly upon computational approaches from auto-
mata theory and cognitive architectures (Hopcroft and

Ullman 1979; Lewis and Vasishth 2006), while dynamical

system models that could also be able to account for brain
wave dynamics are still in their infancy (beim Graben et al.

2008; Vosse and Kempen 2000; Garagnani et al. 2007). The

contentious issues of the former approach regarding the
computational viability of grammars intended to capture

properties of human language have been with us since

Chomsky (1957). The nature of this long debate centers
around whether the models of language and language pro-

cessing proposed are, in principle, computable;

computability being a minimal requirement for any attempt
to formally describe complex behavior exhibited by a bio-

logical system. As our understanding of the biology and

physiology of the brain has increased, similar issues have
guided the development of computational models of brain

physiology. There are now interesting competing models
for both language processes (Elman 1995; Tabor et al.

1997; Christiansen and Chater 1999; Vosse and Kempen

2000; beim Graben et al. 2008; Hagoort 2005; Lewis and
Vasishth 2006; van der Velde and de Kamps 2006; Smo-

lensky and Legendre 2006) and brain functions (Wilson and

Cowan 1973; Amari 1977; Jirsa and Haken 1996; Coombes
et al. 2003; Jirsa 2004; Wright et al. 2004; Garagnani et al.

2007) (see also the contributions in this special issue).

Although language understanding takes place in the human
brain, computational modeling of language processes and

computationalmodeling of brain physiology are not the same.

The models address quite different levels of description and
reflect different assumptions regarding the operational prim-

itives and desired final states.While the former generally refer
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to abstract feature spaces such as ‘‘stack tapes’’, ‘‘neural

blackboards’’ or ‘‘sketch pads’’ (Hopcroft and Ullman 1979;
Anderson 1995; van der Velde and de Kamps 2006), the latter

aim at describing membranes, neurons, or mass potentials

(beim Graben 2008). Nevertheless, a successful model of
language processing should be interpretable in terms of a

model of brain function. This represents a new kind of eval-

uative paradigm on models of language or more generally
cognitive processes: (1) Is the model computationally tracta-

ble? (2) Is the model interpretable in terms of descriptions of
the supporting physiology?

Following this approach, computational models of lan-

guage processing must take very seriously the properties
inherent in computational models of the brain. In doing so

we are led to address the issues and assumptions raised by

the differing levels of description targeted by the models.
We are also provided with a metric for comparison of

competing models.

Here we address the question: Can the basic assump-
tions and mechanisms underpinning a language processing

model be expressed in terms that are compatible with

viable models of the brain? Our answer will be yes, and
furthermore, we argue that this result has direct bearing on

important debates regarding the viability of certain classes

of language processing models.
An outstanding controversial issue is whether grammars

and processing mechanisms of human languages are

recursive or not (Hauser et al. 2002; Everett 2005) and
whether neural network models should implement this

property either faithfully or rather by means of graceful
saturation (Christiansen 1992; Christiansen and Chater
1999; Smolensky 1990; Smolensky and Legendre 2006).

Especially Smolensky’s Integrated Connectionist/Symbolic
architecture (Smolensky and Legendre 2006; Smolensky
2006) represents symbolically meaningful states by very

few very sparse patterns in very high, yet finite, dimensional

activation vector spaces (beim Graben et al. 2007, 2008).
In order to avoid such sparse representations, we suggest

employing infinite-dimensional function spaces in this

paper. This approach is in line with related attempts by
Smolensky (1990), Moore and Crutchfield (2000), Maye

and Werning (2004), Werning and Maye (2007) and

compatible with neural and dynamical field theories of
cognition (Wilson and Cowan 1973; Amari 1977; Jirsa and

Haken 1996; Coombes et al. 2003; Jirsa 2004; Wright

et al. 2004; Erlhagen and Schöner 2002; Schöner and
Thelen 2006; Thelen et al. 2001).

We shall construct a mapping from the dynamics of lan-

guage processing into a field dynamics in several steps. First,
in Section ‘‘Dynamic parsing’’, we describe a simplified

parsing dynamics based upon a toy-grammar, to be introduced

in Section ‘‘Grammars’’. Second, in Section ‘‘Fock space
representations’’, we shall study a particular vector space

representation of phrase structure trees as suggested by

Smolensky (1990) and Smolensky and Legendre (2006). We
also embed the time-discrete representation of the parsing

process into a time-continuous dynamics. In Section ‘‘Order

parameter dynamics’’ we derive neurally motivated order
parameter equations (Haken 1983) of the parser. Third, in

Section ‘‘Spherical wave functions’’, we map the vectorial

representation of the parsing states into the function space of
spherical harmonics defined on an abstract feature space.

Here, the crucial point is to reduce the dimension of the vector
space by a separation of time scales. Finally, the different parts

of themodel are integrated into afield-theoretic representation

with transient dynamics in Section ‘‘Dynamic fields’’. Section
‘‘Simulations’’ presents results of numerical simulations of the

parsing examplediscussed throughout the paper.Weconclude

with a discussion about a tentative relation between ourmodel
and electrophysiological findings on language-related brain

waves.

Grammars

Sentences are hierarchically structured objects, commonly

described by phrase structure trees in linguistics (Chomsky

1957; Hopcroft and Ullman 1979). Contemporary linguis-
tic and parsing theories have elaborated considerably on

these early approaches (cf. Stabler 1997 for one particular

account). For our purposes, we investigate a toy-grammar
that simplifies our task but is nevertheless representative of

the basic operations required of a natural language parser.

Consider e.g. the sentence

Example 1 Susan ate grass:

This simple sentence ðSÞ consists of a subject, the noun
phrase Susan; and a predicate, the verbal phrase

ðVPÞ; ate grass: The latter in turn is construed from the

verb ate and another noun phrase, the direct object grass:
Therefore, the sentence from example 1 can be described

by the tree depicted in Fig. 1.

From the phrase structure tree in Fig. 1, a context-free
grammar (CFG) can be easily derived by taking the node S

as the start symbol and VP as another nonterminal such that

every branching of the tree corresponds to a production of
the grammar G ¼ ðT;N;P; SÞ; with

T ¼ fSusan; ate; grassg
N ¼ fS; VPg
P ¼ fð1Þ S ! Susan VP;

ð2Þ VP ! ate grass

g;

ð1Þ

where T is a finite terminal alphabet, N is a finite set of

nonterminal categories, P % N& ðT [ NÞ' comprises the
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production rules, and S 2 N is the distinguished start
symbol.

The productions p [ P are usually drawn as rule
expansions

p : A ! c ð2Þ

as in (1), where A 2 N and c is a finite word of the Kleene
hull ðT [ NÞ' (Hopcroft and Ullman 1979). We call a

production p binary branching, if c 2 ðT [ NÞ2; i.e. c in (2)
is a word of length 2, c = v1v2, with v1; v2 2 T [ N:
Accordingly, we call a CFG G binary branching, if all rules

p [ P are binary branching. Obviously, our example
grammar G is binary branching.

Dynamic parsing

In order to understand a sentence the brain has to recognize
at least ‘‘who is doing what to whom?’’ (Bornkessel et al.

2005), i.e, it has to reconstruct the phrase structure tree

from the sequence of words. This mapping from a sentence
to a tree is called parsing. Context-free languages can be

parsed through push-down automata (Hopcroft and Ullman

1979). The simplest of these devices, the top-down rec-
ognizer, emulates the so-called left-derivation of a phrase

structure tree, where always the leftmost not yet expanded

nonterminal is expanded according to the rules of the
grammar (1). Starting with the start symbol S we can thus

derive the following strings:

S ! Susan VP
! Susan ate grass:

ð3Þ

Binary branching CFGs give rise to labeled binary
phrase structure trees by successively expanding rules
from P through left-derivations as in Fig. 1. Figure 2

shows the evolution of the phrase structure trees for the

sentence Susan ate grass according to grammar (1).
Figure 2 reveals parsing as a dynamics in the space of

phrase structure trees (Kempson et al. 2001). Formally, we

define: Let T be the set of binary labeled phrase structure

trees consistent with a given binary branching context-free
grammar G. Clearly, T contains the ‘‘tree’’ S (the start

symbol at the root) and at least one tree s for each well-

formed sentence. A mapping

p : T ! T; x 7! y; x; y 2 T ð4Þ

is a sequential dynamic top-down parser if the following

holds: There is a constant L 2 N such that for all
l 2 N; 0( l( L :

1. plðSÞ is a subtree of s of height l,
2. p expands the tree s as a left-derivation,

3. pLðSÞ ¼ s:

We call L the duration of the parsing process. The parse
of s generated by p is the trajectory

U ¼ ðplðSÞÞ0( l( L; ð5Þ

which is a ‘‘word’’ of length L in the Kleen hull T*.

Fock space representations

In this section, we present a mathematically rigorous
reconstruction of the tensor product representations that

have been introduced by Smolensky (1990, 2006), Smo-

lensky and Legendre (2006) and further supported by
Mizraji (1989, 1992).

Let S be a set of symbolic structures, e.g., of feature lists

(Stabler 1997) or of phrase structure trees (i.e. S = T)
(Chomsky 1957; Hopcroft and Ullman 1979). How can we

represent a structured expression s [ S by a vector s in

some vector space? We follow Smolensky by introducing
two finite sets F and R of elementary fillers and elementary
roles, respectively.

Consider e.g. the set of binary labeled trees T for the
CFG G (1) as an example. Let s [ T be the tree in Fig. 2c.

First, we have to chose fillers and roles. A suitable choice

for the elementary fillers are the variables of G, i.e. F ¼
T [ N: The elementary roles are the three positions r1 ¼
Parent; r2 ¼ LeftChild; r3 ¼ RightChild;R ¼ fr1; r2; r3g
as indicated in Fig. 3.

A filler/role binding for a basic building block of s,
denoted f/r, is an ordered pair (f, r) [ F9 R. Decomposing s
into a set of (elementary) filler/role bindings yields a subset
f 0 = {(fi, rj) | i [ I, j [ J} (I, J are particular index sets) of F
9 R. The set f 0 is therefore an element of the power set

f 0 2 F1 ¼ }ðF & RÞ; ð6Þ

Fig. 1 Phrase structure tree of
the sentence Susan ate grass

(a) (b) (c)

Fig. 2 Left-derivation (3) of the sentence Susan ate grass accord-
ing to grammar (1)

Fig. 3 Elementary role posi-
tions of a labeled binary tree

Cogn Neurodyn (2008) 2:79–88 81

123



where }ðXÞ denotes the set of all subsets of a set X.
In our example, we first bind the elementary fillers VP to

r1, ate to r2 and grass to r3, obtaining the complex filler

f 0 ¼ fðVP; r1Þ; ðate; r2Þ; ðgrass; r3Þg 2 F1:

Next, recursion comes into the game. The subsets f 0 of
F 9 R are complex fillers that can in turn bind to other
roles: f 0/r. This again is an ordered pair ðf 0; rÞ 2 }ðF &
RÞ & R; belonging to the next-level filler/role binding
f 00 = {(f 0i, rj) | i [ I0, j [ J0}. Therefore

f 00 2 F2 ¼ }ð}ðF & RÞ & RÞ: ð7Þ

Looking at the tree Fig. 2c in our example, reveals that

the complex filler f 0 ¼ fðVP; r1Þ; ðate; r2Þ; ðgrass; r3Þg is

recursively bound to tree position r3 at the higher level,
whereas the elementary fillers S and Susan are attached to

r1 and r2, respectively. Thus, the tree s [T is mapped onto

its filler/role binding

f 00 ¼ fðS; r1Þ; ðSusan; r2Þ; ðfðVP; r1Þ; ðate; r2Þ; ðgrass; r3Þg;
r3Þg 2 F2: ð8Þ

For even higher trees, we have to repeat this
construction recursively, entailing a hierarchy of filler/

role bindings

F0 ¼ F

Fnþ1 ¼ }ðFn & RÞ:
ð9Þ

In this way, any finite structure s [ S becomes
decomposed into its filler/role bindings by a map

b : S ! FN ; bðsÞ 2 FN ; s 2 S ð10Þ

for a particular N 2 N: In order to deal with recursion
properly, we further define the collection

F1 ¼ R [
[1

n¼1
Fn

 !

: ð11Þ

After decomposing the structure s into its filler/role

bindings, b(s), we map s onto a vector s from a vector
space F by the tensor product representation w, obeying

1. w : F1 ! F ;
2. w(Fn) is a subspace of F ; for all n 2 N; in particular

for F0 = F is wðFÞ ¼ VF a subspace of F ;
3. wðRÞ ¼ VR is a subspace of F ;
4. wððf ; rÞÞ ¼ wðf Þ * wðrÞ; for all f [ Fn, r [ R,
5. wð

S
i2I bðsiÞÞ ¼ai2IwðbðsiÞÞ for all substructures si

of s [S.

Taken together, these properties yield that F is the Fock

space

F ¼a1
n¼1VF *bn

k¼1VR; ð12Þ

known from quantum field theory (Haag 1992).

In order to apply the tensor product representation to our

example CFG G (1) with phrase structure trees T, we
identify the categories f 2 T [ N of G with their associated

filler vectors w(f). On the other hand, we represent the roles

with the ‘‘one-particle’’ Fock space basis

wðr1Þ ¼ j1i; wðr2Þ ¼ j2i; wðr3Þ ¼ j3i ð13Þ

This notation has the advantage, that both, the tensor
products in item 4, wðfiÞ * wðrjÞ; and the direct sums in

item 5, ai2IwðbðsiÞÞ, can be omitted, simply writing w(fi)
|rji, and

P
i2I wðbðsiÞÞ; respectively.

The tree s in (8) is than mapped onto the Fock space

vector

wðbðsÞÞ¼Sj1iþSusanj2iþðVPj1iþatej2iþgrassj3iÞj3i
¼Sj1iþSusanj2iþVPj13iþatej23iþgrassj33i
2F ; ð14Þ

where we wrote the tensor products jii* jji ¼ jiijji as

‘‘two-particle’’ Fock space vectors |i ji.
Now, we are able to map a parse, namely a trajectory of

trees U [ T* generated by a sequential dynamic top-down

parser p (5) onto a trajectory of Fock space vectors

U ¼ ðwðbðplðSÞÞÞÞ0( l(L: ð15Þ

Correspondingly, the parser p is represented by a
nonlinear operator

Pp : F ! F ; x 7! y; x; y 2 F ð16Þ

defined through

ðPp + w + bÞðxÞ ¼ ðw + b + pÞðxÞ ð17Þ

for all x [ T belonging to a parse U.
For our example above, the Fock space representation U

of the parse U shown in (3) and in Fig. 2, is obtained as

U ¼ ðSj1i; Sj1iþ Susanj2iþ VPj3i; Sj1iþ Susanj2i
þ VPj13iþ atej23iþ grassj33iÞ ð18Þ

In Section ‘‘Dynamic fields’’, we are going to describe

the Fock space parser Pp by a dynamically evolving field.
A suitable function space for these fields will be

constructed in Section ‘‘Spherical wave functions’’. To

this aim, we need an embedding of the time-discrete
dynamics (15) into continuous time. We achieve this

construction by an order parameter expansion (Haken

1983) of the form

uðtÞ ¼
XL

l¼0
klðtÞwðbðplðSÞÞÞ; t 2 Rþ0 ð19Þ

where the time-dependent coefficient kl(t) is the order

parameter for the lth subtree plðSÞ of the parse U. Each
order parameter kl(t) assumes a unique maximum at time
Tl 2 Rþ0 ðTlþ1 [ TlÞ when the lth tree has been established.
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Accordingly, TL denotes the duration of the whole parse in

continuous time. The functions kl(t) form a Lagrange basis

with kl(Tk) = Akdlk and Ak the amplitude of the k-th order
parameter (Kress 1998, Chap. 8)

The order parameter dynamics is usually governed by

order parameter equations

sl
dklðtÞ
dt

þ klðtÞ ¼ glðk0ðtÞ; k1ðtÞ. . .; kLðtÞÞ ð20Þ

with appropriate functions gl (Haken 1983).

Order parameter dynamics

We will discuss two different approaches to determine the

time evolution of the coefficients kl(t), l = 0,…, L and

t 2 Rþ0 The first approach will be based on a simple
recursion formula leading to a partition of unity for the

coefficients. The second approach is build on order

parameter dynamics as suggested by Haken (1983). Here,
we will incorporate the neural background of our mapping

and use a system of coupled nonlinear differential equa-

tions based on a leaky integrator neuron model.

Dynamics based on a recursion formula

For our recursive dynamics we start with some function d0
shaping the decay dynamics of the our coefficients. Here,

the constant D denotes the maximal time interval on which

a coefficient is active. For this first approach this means
that kl(t)[ 0. Later we will also work with coefficients

which are not compactly supported, then activation is more

complex and might be understood as the period in time in
which the coefficient superseeds some threshold.

We assume that d0 is monotonic and continuous on

½0;D=2-; d0(0) = 1 and d0ðD=2Þ ¼ 0: Also, we define
d1 = 1-d0 on ½0;D=2-; which yields d1(0) = 0 and

d1ðD=2Þ ¼ 1: Now, we set

k0ðtÞ ¼
d1ðtÞ; t 2 ½0;D=2-

d0 t . D
2

! "
; t 2 ½D=2;D-

0; otherwise:

8
<

: ð21Þ

Then, we define the coefficients kl for l C 1 by

klðtÞ ¼ kl.1 t . D
2

# $
; l ¼ 1; . . .; L. 1: ð22Þ

The functions kl build a partition of unity, i.e. we have the
property

XL.1

l¼0
klðtÞ ¼ 1; t 2 R: ð23Þ

Further, the support of the coefficient kl is a subset of
l ! D2 þ ½0;D-:

Neural order parameter dynamics

Basically, Eq. 20 is a leaky integrator equation that is often
used in neural modeling (beim Graben and Kurths 2008;

beim Graben 2008). It can also be seen as a discretized

version of the Amari equation for neural/dynamical fields
(Wilson and Cowan 1973; Amari 1977; Jirsa and Haken

1996; Coombes et al. 2003; Jirsa 2004; Wright et al. 2004;

Erlhagen and Schöner 2002; Schöner and Thelen 2006;
Thelen et al. 2001). Thus it is promising to relate (20) with

brain dynamics.

Since each well-established parse state sl at time Tl
triggers its successor sl+1, we choose a similar delay ansatz

for the coupling functions gl in (20) as in Section

‘‘Dynamics based on a recursion formula’’:

g0ðtÞ ¼ w ! fg;r
1:5D. t

D

# $
; ð24Þ

glðk1; . . .; kl.1ÞðtÞ ¼ w ! fg;rðkl.1ðt . DÞÞ; l/ 1; ð25Þ

for t C 0.
Here, the sigmoidal logistic function f with cut constant

g and spread parameter r is defined by

fg;rðqÞ ¼
1

1þ e.r!ðq.gÞ
ð26Þ

and w, g, r and sl = s are real positive constants. For the

case r = 0 we use the jump function

fg;0ðqÞ ¼
0; q\g

1; otherwise;

%
ð27Þ

which corresponds to the limit of fg,r for r ? ?. The
properties of the solutions to (20)–(27) depend strongly on

r. For r = 0 it has singular points, for r[ 0 it is a smooth

function.

Spherical wave functions

Let VF ¼ SpanðfkÞ1( k( n be the n-dimensional space

spanned by the (linearly independent) filler vectors fk; and
VR ¼ Spanðj1i; j2i; j3iÞ be the 3-dimensional space span-

ned by the ‘‘one-particle’’ roles (13).

Our approach relies upon a separation ansatz where the
fillers are described by functions of time, while the roles

are given by spherical harmonics at the unit sphere S. First,
we identify the n fillers fk with functions fk(t).

Next, we regard the tree in Fig. 3 as a ‘‘deformed’’ term

schema for a spin-one triplet (Fig. 4).

Figure 4 indicates that the three role positions |1i, |2i,
|3i in a labeled binary tree have been identified with the

three z-projections of a spin-one particle:
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j2i 0 j1;.1i
j1i 0 j1; 0i
j3i 0 j1; 1i;

ð28Þ

which have an L2(S) representation by spherical harmonics

jj;mi ffi Yjmðu;JÞ; u 2 ½0; 2p½ ;J 2 ½0; p-: ð29Þ

In order to deal with complex phrase structure trees, we

have to describe the tensor products of role vectors jii*
jji ¼ jiji: Inserting the spin eigenvectors from (28), yields

expressions like

jj1;m1i* jj2;m2i 0 jj1;m1; j2;m2i; ð30Þ

well-known from the spin coupling in quantum mechanics
(Edmonds 1957).

In quantum mechanics, the product states (30) generally

belong to different multiplets, which are given by the
irreducible representations of the spin algebra sl(2). These
are obtained by the Clebsch–Gordan coefficients in the

expansions

jj;m; j1; j2i¼
X

m1;m2¼m.m1

hj1;m1; j2;m2jj;m; j1; j2ijj1;m1; j2;m2i;

ð31Þ

where the total angular momentum j obeys the triangle

relation

jj1 . j2j ( j ( j1 þ j2: ð32Þ

However, our aim appears to be a bit different. Instead
of computing the state of the coupled system by means of

(31), we have to express the particular state vector (30)

through higher harmonic wave functions. Therefore, we
have to invert (31), leading to

jj1;m1; j2;m2i ¼
Xj1þj2

j¼jj1.j2j
hj;m; j1; j2jj1;m1; j2;m2ijj;m; j1; j2i;

ð33Þ

with the constraint m = m1 + m2.

Equation (33) has to be applied recursively in order to

obtain the role positions of more and more complex
phrase structure trees. Finally, a single tree s [ T is rep-

resented by its filler/role bindings in the basis of spherical

harmonics

sðu;J; tÞ ¼
X

jkm

ajkmfkðtÞ Yjmðu;JÞ; ð34Þ

where the coefficients ajkm = 0 if filler k is not bound to

pattern Yjm. Otherwise, the ajkm encode the Clebsch–Gor-
dan coefficients in Eq. (33).

Combining (34) with the order parameter ansatz (19),

yields the spatio-temporal parsing dynamics

uðu;J; tÞ ¼
XL

l¼0
klðtÞslðu;J; tÞ; ð35Þ

indicating a separation of time scales (Haken 1983): the

fast functions fk(t) in sl(u, 0, t) encode instantaneous trees,
while the transient evolution of the order parameters kl(t)
reflects the time course of the parsing process.

Let us illustrate this construction in the light of our

example CFG G (1). The five fillers f1 ¼ S; f2 ¼ VP; f3 ¼
Susan; f4 ¼ ate; f5 ¼ grass are encoded by functions

fk(t) with k = 1, 2,…, 5.

The first state, Sj1i; of the parse U (18) in Fock space is
simply given by

s0 ¼ f1ðtÞ Y1;0

since j1i ffi Y1;0: For the second state, Sj1iþ Susanj2iþ
VPj3i; we straightforwardly obtain the representation

s1 ¼ f1ðtÞ Y1;0 þ f3ðtÞ Y1;.1 þ f2ðtÞ Y1;1:

Only computing the third and final state, Sj1iþ
Susanj2iþ VPj13iþ atej23iþ grassj33i; turns out to

be somewhat cumbersome. In a first step, we get

s3 ¼ f1ðtÞ Y1;0 þ f3ðtÞ Y1;.1 þ f2ðtÞj1; 0ij1; 1i
þ f4ðtÞj1;.1ij1; 1iþ f5ðtÞj1; 1ij1; 1i:

Expressing the tensor products by (33), yields firstly

j1; 0ij1; 1i ¼ j1; 0; 1; 1i ¼
X2

j¼0
hj; 1; 1; 1j1; 0; 1; 1ijj; 1; 1; 1i

¼ h0; 1; 1; 1j1; 0; 1; 1ij0; 1; 1; 1i

þ h1; 1; 1; 1j1; 0; 1; 1ij1; 1; 1; 1i

þ h2; 1; 1; 1j1; 0; 1; 1ij2; 1; 1; 1i:

The first Clebsch–Gordan coefficient h0, 1, 1, 1 | 1, 0, 1,

1i = 0 because a spin j = 0 particle cannot have an m = 1
projection. On the other hand, the Clebsch–Gordan

coefficients are h1; 1; 1; 1j1; 0; 1; 1i ¼ .1=
ffiffiffi
2

p
and h2; 1; 1;

1j1; 0; 1; 1i ¼ 1=
ffiffiffi
2

p
:

Fig. 4 Tree roles in a spin-one term schema

84 Cogn Neurodyn (2008) 2:79–88

123



Correspondingly, we obtain for

j1;.1ij1;1i¼ j1;.1;1;1i¼
X2

j¼0
hj;0;1;1j1;.1;1;1ijj;0;1;1i

¼ h0;0;1;1j1;.1;1;1ij0;0;1;1i
þ h1;0;1;1j1;.1;1;1ij1;0;1;1i
þ h2;0;1;1j1;.1;1;1ij2;0;1;1i:

Here, m = 0 is consistent with j = 0, 1, 2 such that all

three terms have to be taken into account through
h0;0;1;1j1;.1;1;1i¼1=

ffiffiffi
3

p
;h1;0;1;1j1;.1;1;1i¼.1=

ffiffiffi
2

p
;

and h2;0;1;1j1;.1;1;1i¼1=
ffiffiffi
6

p
:

Finally, we consider

j1; 1ij1; 1i ¼ j1; 1; 1; 1i ¼
X2

j¼0
hj; 2; 1; 1j1; 1; 1; 1ijj; 2; 1; 1i

¼ h0; 2; 1; 1j1; 1; 1; 1ij0; 2; 1; 1i
þ h1; 2; 1; 1j1; 1; 1; 1ij1; 2; 1; 1i
þ h2; 2; 1; 1j1; 1; 1; 1ij2; 2; 1; 1i:

Obviously, only the last term contributes to the sum with

h2, 2, 1, 1 | 1, 1, 1, 1i = 1 for the same reason as above.
Summarizing, the parse U in Fig. 2, possessing the

abstract Fock space representation (18), translates into the

time-discrete dynamics

s0 ¼ f1ðtÞ Y1;0
! s1 ¼ f1ðtÞ Y1;0 þ f3ðtÞ Y1;.1 þ f2ðtÞ Y1;1

! s2 ¼ f1ðtÞ Y1;0 þ f3ðtÞ Y1;.1 þ
f2ðtÞffiffiffi

2
p Y2;1 . Y1;1

! "

þ f4ðtÞ
1ffiffiffi
3

p Y0;0 .
1ffiffiffi
2

p Y1;0 þ
1ffiffiffi
6

p Y2;0

# $
þ f5ðtÞ Y2;2:

ð36Þ

Dynamic fields

Dynamic field theories (DFT) are a phenomenological

account for continuum models in the cognitive sciences
(Erlhagen and Schöner 2002; Schöner and Thelen 2006;

Thelen et al. 2001). They are mathematically equivalent

to neural field theories (Wilson and Cowan 1973;
Amari 1977; Jirsa and Haken 1996; Coombes et al.

2003; Jirsa 2004; Wright et al. 2004; beim Graben

2008), yet not referring to a particular neurophysio-
logical description but rather to dynamics in abstract

feature space.
In order to obtain such dynamic fields, we bring (36)

together with (35) to generate the time-continuous parsing

dynamics:

uðu;J;tÞ¼k0ðtÞf1ðtÞY1;0
þk1ðtÞ f1ðtÞY1;0þf3ðtÞY1;.1þf2ðtÞY1;1

' (

þk2ðtÞ f1ðtÞY1;0þf3ðtÞY1;.1þ
f2ðtÞffiffiffi

2
p Y2;1.Y1;1

! ")

þf4ðtÞ
1ffiffiffi
3

p Y0;0.
1ffiffiffi
2

p Y1;0þ
1ffiffiffi
6

p Y2;0

# $
þf5ðtÞY2;2

*
:

ð37Þ

In order to complete our description, we have to
determine the filler functions fk(t) in (37). One possible

choice is to assign eigenfrequencies

xk ¼
2pk
n

ð38Þ

to the five fillers f1 ¼ S; f2 ¼ VP; f3 ¼ susan; f4 ¼
ate; f5 ¼ grass; such that the fillers become represented

as harmonic oscillations

fkðtÞ ¼ eixkt ð39Þ

in time.
Then, the parse U in Fig. 2, possessing the Fock space

representation (37), translates into

uðu;J;tÞ¼k0ðtÞeix1t Y1;0

þk1ðtÞ eix1t Y1;0þeix3t Y1;.1þeix2t Y1;1
' (

þk2ðtÞ eix1t Y1;0þeix3t Y1;.1þ
eix2t

ffiffiffi
2

p Y2;1.Y1;1
! ")

þeix4t
1ffiffiffi
3

p Y0;0.
1ffiffiffi
2

p Y1;0þ
1ffiffiffi
6

p Y2;0

# $
þeix5t Y2;2

*
:

ð40Þ

Simulations

The stationary waves representing the three parse steps s0,
s1 and s2 of U in (36) are shown in Fig. 5(a–c) as a
sequence of snapshots, respectively.1

Note that the initial state s0 is given by the constant ‘‘pz
orbital’’ (Fig. 5a).

In the representation of s1 we have a superposition of the
constant function from s0 with two higher harmonics,

indicating the fillers f2(t) and f3(t) assigned to the tree
position roles r3 and r2, respectively (Fig. 5b). The final

state s2 is given by an even more involved oscillation

(Fig. 5c).
Additionally, we present in Fig. 6. the dynamics of |s1|

(Fig. 5b) with higher temporal resolution.

Now, the first column of Fig. 6. corresponds to the first
six images in the row of Fig. 5b; the toroidal dynamics

accounted for by the fillers f2(t) and f3(t) is clearly visible.

1 Animations for our simulations are available as supplementary
material online.

Cogn Neurodyn (2008) 2:79–88 85

123



Figure 7 displays the temporal evolution of the three

order parameters kl(t), denoting the amplitudes of the cor-
responding parse states sl, according to the order parameter

equation (20) with the coupling functions gl (24). For the
numerical simulation of the neural order parameter equation
we used Euler’s method (Kress 1998, Chap. 10).

Figure 7 reveals that the parse states s0, s1, and s2 are fully
established at timesT0& 50,T1& 150, andT2& 250,where
the order parameters assume their respective local maxima.

Finally, Fig. 8 presents the transient evolution of the

dynamic parse field juðu;J; tÞj according to (40) as a
sequence of snapshots.

Comparing Fig. 8 with Fig. 5 shows that the parse states

s0, s1, and s2 become established at times T0 & 50, T1 &
150, and T1 & 250 in accordance with Fig. 7.

Discussion

In Section ‘‘Introduction’’ we have raised the question: Can
the basic assumptions and mechanisms underpinning a

language processing model be expressed in terms that are

compatible with viable models of the brain? The basic
assumptions and mechanisms of linguistics are that

Fig. 6 Snapshot sequence of
the state |s1| with higher
temporal resolution

Fig. 5 Snapshot sequences of
the moduli of the stationary
waves |s1| (36). (a) for the initial
state s0, (b) for s1, (c) for s2
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symbolic expressions are complex and recursive hierar-

chical data structures which are symbolically processed by
appropriate cognitive architectures (Chomsky 1957; Hop-

croft and Ullman 1979; Lewis and Vasishth 2006). On the

other hand, macroscopic brain function is often modeled in
terms of neural field dynamics (Wilson and Cowan 1973;

Amari 1977; Jirsa and Haken 1996; Coombes et al. 2003;

Jirsa 2004; Wright et al. 2004; Erlhagen and Schöner 2002;
Schöner and Thelen 2006; Thelen et al. 2001).

In order to respond to that question, we have constructed
a faithful mapping from linguistic phrase structure trees to

the infinite-dimensional function space of spherical wave

functions, using Smolensky’s filler/role bindings and tensor
product representations (Smolensky 1990, 2006; Smolen-

sky and Legendre 2006). The abstract feature space of this

representation is the unit sphere S. Language processing is
than described by the transient evolution of spherical pat-

terns, governed by order parameter equations for their

respective amplitudes (Haken 1983). For the order
parameter equations we chose a neural leaky integrator

model with delayed coupling between the parse states.

Since spherical harmonics are also often employed in
analyzing electroencephalographic brain waves (Nunez and

Srinivasan 2006), it is tempting to simply identify the

feature space S of our model with a spherical head model,

thereby interpreting the dynamic field u(u, 0, t) of the

parser with the actual voltage distribution across the human
scalp. However, such a straightforward interpretation is not

tenable as it would require the whole brain to be in only a

few representative states necessary to maintain one par-
ticular cognitive task. This is obviously not the case.

Therefore we would need another mapping from the

abstract feature space representation of our model to a
neural representation in the brain in order to answer the

question in the end. We shall leave this issue for future
research on the cognitive neurodynamics of brain waves.
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