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Abstract

Classical cognitive science assumes that intelligently behaving
systems must be symbol processors that are implemented in phys-
ical systems such as brains or digital computers. By contrast, con-
nectionists suppose that symbol manipulating systems could be ap-
proximations of neural networks dynamics. Both classicists and
connectionists argue that symbolic computation and subsymbolic
dynamics are incompatible, though on different grounds. While
classicists say that connectionist architectures and symbol proces-
sors are either incompatible or the former are mere implementations
of the latter, connectionists reply that neural networks might be
incompatible with symbol processors because the latter cannot be
implementations of the former. In this contribution, the notions of
“incompatibility” and “implementation” will be criticized to show
that they must be revised in the context of the dynamical system
approach to cognitive science. Examples for implementations of
symbol processors that are incompatible with respect to contextual
topologies will be discussed.

1. Introduction

Classical cognitive science relies upon the Physical Symbol System
(PSS) hypothesis (Newell and Simon 1976) that intelligent behavior is
essentially symbol processing which is in some way implemented by the
dynamics of a physical system. Cognitive neuroscience is actually con-
cerned with the question how these PSS’s are implemented in the func-
tioning of neural networks in the brain (Gazzaniga 2000). These atti-
tudes are common among researchers in the field. However, there is an
ongoing controversy whether neural network models could be regarded as
alternatives to the symbolic paradigm providing proper cognitive archi-
tectures which are more than “mere” implementations (Smolensky 1991,
p. 203) of symbol processors (Smolensky 1988, Fodor and Pylyshyn 1988,
Smolensky 1991, Fodor and McLaughlin 1990, Chalmers 1990, Fodor 1997,
Prince and Smolensky 1997). With his Proper Treatment of Connection-
ism (PTC), Smolensky (1988, p. 2) claimed that connectionist neural
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networks are even more than physical implementations of symbol systems
for they operate neither at the “conceptual level” as these do, nor at the
“neural level” of physiology (Smolensky 1988, pp. 5f). They rather consti-
tute a “subconceptual level” (Smolensky 1988, p. 6) where “subsymbols”,
namely activation vectors, evolve according to nonlinear differential equa-
tions (Smolensky 1988, pp. 6f). Higher “conceptual levels” emerge by
interpreting distributed activation patterns across the units of the net-
work as symbols and their interactions as symbol processing for which
a “complete, formal, and precise description” (Smolensky 1988, p. 6) in
terms of algorithmic computation is not feasible (Smolensky 1991, p. 203).
Thus, Smolensky argued, the PSS and the PTC account were incompatible
and the PSS hypothesis would even be an approximation of the proper
connectionist dynamics (Smolensky 1988, p. 7).

This position was attacked by the classicists Fodor and Pylyshyn
(1988), Fodor and McLaughlin (1990) and Fodor (1997) advocating the
PSS hypothesis. They argued that cognitive processes have a complex
“combinatorial syntax and semantics” where “atomic” symbols can be
merged into “molecular” symbols and molecular symbols further into more
complex ones (Fodor and Pylyshyn 1988, p. 12) thus yielding a hierarchy
of symbol structures whose “constituents” have “causal roles” in mental
reasoning (Fodor and McLaughlin 1990, p. 199). According to Fodor and
Pylyshyn (1988, p. 10) connectionist architectures of the mind do not
have constituents of “representational states” and are, hence, either in-
compatible with PSS’s or they are mere implementations at the level of
“nonrepresentational states” (Fodor and Pylyshyn 1988, pp. 24, 28, 39,
41, 50).

Against Fodor and Pylyshyn (1988), Fodor and McLaughlin (1990)
and Fodor (1997), Smolensky (1991) and Chalmers (1990) objected that
connectionist neural networks allow indeed for constituent structures in
distributed representations. Smolensky (1991, pp. 212ff) proposed his
“tensor product representations” which map a hierarchical symbol struc-
ture onto an activation vector spanned by tensor products of “filler” vec-
tors and “role” vectors. This mapping is unique if fillers and roles form
a basis of their own subspaces, a point that was not appropriately ac-
knowledged by Fodor and McLaughlin (1990) and Fodor (1997) in their
replies. However, they are right as regards the lack of causal efficacy of
constituents in the tensor product representation, thus concluding again
that connectionist models are incompatible with symbolic ones as archi-
tectures of the mind.

More recently, Prince and Smolensky (1997) have shown that the sym-
bolic architecture of Optimality Theory (OT) is compatible with connec-
tionist harmony machines (Smolensky 1986) because OT is a “qualita-
tively different formal system at a higher level of analysis” of the subsym-
bolic dynamics of a neural network (Prince and Smolensky 1997, p. 1606).
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Then, OT must be regarded as being implemented by the network’s dy-
namics according to the definition of Smolensky (1988, pp. 59f). There-
fore, we know examples of compatible implementations of PSS’s; another
one is discussed by Blutner (2004).

Today, connectionism is largely assimilated by the Dynamical Systems
Approach (DSA) to cognition (Kelso 1995, van Gelder 1998, Beer 2000,
beim Graben et al. 2004b) which is very successful in describing non-
symbolic processes such as motor control or phonetics (Kelso 1995, Jirsa
et al. 1998, Raçzasek et al. 1999). In this new context, questions arise
as to the sense in which DSA models are incompatible with PSS’s and
whether they are implementations of the latter.

The aim of this paper is to discuss these issues. In order to do so,
I shall criticize the concepts incompatibility in Sect. 2 and implementa-
tion in Sect. 3 with respect to dynamical systems and symbol processors.
It will be shown in Sect. 2 that the concept of incompatibility was not
appropriately used by both Fodor and Pylyshyn (1988) and Smolensky
(1988) and must therefore be revised. In Sect. 3, I will then provide three
examples for DSA models which are in fact implementations of PSS’s in
the sense of Smolensky (1988, 1991), but which are incompatible with
other PSS’s and with the underlying dynamics.

2. Incompatibility

The concept of incompatibility derives originally from quantum physics
(Raggio and Rieckers 1983) where two observables are called incompatible
if they are not precisely measurable simultaneously. Any precise mea-
surement of one of them inevitably prevents a precise measurement of
the other. This can be formally expressed by the notion of an eigen-
state: A physical state is an eigenstate of an observable if the observable
is dispersion-free with respect to the given state, i.e. if a measurement of
the observable always yields the same precise measurement result. Two
observables are compatible if all eigenstates of one of them are also eigen-
states of the other one (and vice versa) and if their eigenstates span the
whole state space (beim Graben and Atmanspacher 2004). Observables
which are not compatible are called incompatible. In this case two observ-
ables do not share all eigenstates, and if one observable is dispersion-free
in its eigenstate then the other one is not dispersion-free in the same state,
and thereby not precisely measurable. Observables are maximally incom-
patible if they have no common eigenstate. Such observables are called
complementary, which is the typical situation in quantum physics (beim
Graben and Atmanspacher 2004).

The notion of a precise description also plays an important role in
Smolensky’s definition of the “incompatibility of the symbolic and the
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subsymbolic paradigms” (Smolensky 1988, p. 7) when a “subconceptual,
connectionist dynamical system [...] does not admit a complete, formal,
and precise conceptual-level description” (Smolensky 1988, p. 7), since
such a description is feasible at the subconceptual level only (Smolensky
1988, pp. 6f). What is a “complete, formal, and precise description” in
this context? By settling this question, I shall show how the concept of
incompatibility should be revised for a DSA to cognition.

Let us first turn to the notion of a “formal” description. As Smolensky
(1988, p. 6) explained, “there will generally be no precisely valid, com-
plete, computable formal principles at the conceptual level; such principles
exist only at the level of individual units — the subconceptual level.” And
Smolensky (1991, p. 203) added that “mental representations and men-
tal processes are not supported by the same formal entities – there are
no ‘symbols’ that can do both jobs. The new cognitive architecture is
fundamentally two-level: formal, algorithmic specification of processing
mechanisms, on the one hand, and semantic interpretation, on the other,
must be done at two different levels of description.”

These quotations illustrate what Smolensky had in mind: a “formal
description” consists of “computable formal principles” allowing for the
“formal, algorithmic specification of processing mechanisms”. That is, a
formal description should be a mathematical model of a dynamical system
in its widest sense, including algorithmic or stochastic descriptions. We
shall start with deterministic dynamical systems and take stochasticity
into account later.

2.1 Dynamical Systems

Deterministic dynamical systems are described by a time-dependent
state x(t) evolving according to deterministic differential or difference
equations along a trajectory exploring the phase space X, i.e. the set of
all possible states. The set of possible trajectories as solutions of the
dynamical equations defines the flow map Φt : X → X of the system such
that for any given initial condition x(0) at time t = 0, x(t) = Φt(x(0)) is
its successor at a later time t.

A neural network consists of n units which might be more or less
activated, thus assuming real values between, say, 0 and 1, where 0 means
no activation and 1 maximal activation. The state of the network is
therefore given by an activation vector of dimension n, such that the
phase space is the hypercube X = [0, 1]n ⊂ R

n. Units change their
activation according to the connectivity of the network. A unit receives
either excitatory or inhibitory input from other units, thereby changing its
activation by the influence of the weighted sum of all other units that are
connected to it. This gives rise to the dynamics which is usually described
by nonlinear differential or difference equations.
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Following Smolensky (1988), the DSA to a connectionist model pro-
vides the “subconceptual level” of a cognitive architecture. The deter-
ministic differential equations admit a “formal” description of the “sub-
symbolic” dynamics (Smolensky 1988, pp. 6f). A formal description of a
dynamical system is complete if all relevant variables are taken into ac-
count (Atmanspacher and Kronz 1999, p. 279). Here, relevance is decided
by means of the formal model chosen to describe the system: relevant are
the variables contained in the dynamical equations of the model. Con-
sider again a neural network of n units. The state of the system is an
activation vector in [0, 1]n which evolves according to a differential equa-
tion with n variables. Therefore, a complete description of the system
refers to these n relevant state variables. For instance, adding m func-
tions of the n state variables to a description results in redundant and,
hence, irrelevant variables. By contrast, a description with less than the
n relevant variables, is equivalent to a projection of the phase space onto
a subspace such that the projected trajectories may intersect each other,
thus violating determinism. Such a description is necessarily incomplete.

Considering that the formal mathematical model of a system deter-
mines its complete description, it is at least questionable whether such a
description is possible for a physically implemented system. In this case
one has to perform measurements on the system. In the most general
mathematical framework which allows the treatment of dynamical sys-
tems, the so-called algebraic quantum theory (Haag 1992, Primas 1990),
a measurement is described by a function f : X → R, a so-called observ-
able mapping states in the phase space onto real numbers, the measure-
ment results.1 A complete description of a neural network of n units can
be obtained, e.g., by the simultaneous measurement of the n observables
fi(x) = xi, i = 1, . . . , n, which project the state x onto the i-th coordinate
axis of the phase space. For particular physical systems such a complete
set of observables can be obtained by virtue of the famous embedding
theorem where a state vector is generated by delayed measurements of
one experimental observable (Takens 1981).

Most epistemic observables (beim Graben and Atmanspacher 2004)
assign the same measurement result to many different individual states in
phase space, which therefore become epistemically indistinguishable. In
other words, if x,y ∈ X are two different states and f : X → R is an
observable such that f(x) = f(y) then we are unable to tell whether the
system is in state x or in state y if we measure only f . Beim Graben
and Atmanspacher (2004) call such states x,y epistemically equivalent
with respect to the observable f . Epistemic equivalence endows the phase
space X of a dynamical system with an equivalence relation entailing a

1Generally speaking, observables are complex-valued functions over the phase space.
Physically meaningful observables are self-adjoined and, hence, real-valued functions.
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partitioning of X into pairwise disjoint subsets of epistemically equivalent
states. We shall restrict ourselves to partitions of X into a finite collection
of subsets P = A1, . . . , AI (I ∈ N).

Epistemic equivalence is not the only problem when dealing with com-
plex physical systems. Physical measurements usually disturb the system
to be measured. This uncontrollable impact of the environment upon
a particular system must be treated by a stochastic approach: measur-
ing the observable f in state x yields realizations of a random variable
F which scatters around f(x) (Atmanspacher and Primas 2003, p. 207).
Then, even if there were no state y that is epistemically equivalent with x,
it would not be possible to know x since the pre-images of the realizations
of F under f form a set of states scattering around x. In practice, one
computes the average over all outcomes of the disturbed observable, or,
what is mathematically equivalent, one computes an ensemble average of
all f(y) over the whole phase space X weighed by a particular probability
density function (p.d.f.) ρ. These p.d.f.’s are called statistical states of
the dynamical system in contrast to the individual states x, which are
points in the phase space.

2.2 Ontic and Epistemic Descriptions

Smolensky distinguished between the “conceptual level” where the
dynamics of a connectionist dynamical system is interpreted in terms
of symbol processing and the “subconceptual level” of the underlying
“subsymbolic” evolution of activation patterns (Smolensy 1988, pp. 3ff).
He pointed out that this distinction resembles that between the “mi-
crolevel” of quantum physics and the “macrolevel” of Newtonian mechan-
ics (Smolensky 1988, pp. 12, 20) or even between the microlevel of sta-
tistical physics and the macrolevel of thermodynamics (Smolensky 1988,
p. 11, see also Blutner 2004) insofar as macrophysical descriptions are only
approximations of microphysical descriptions (Smolensky 1988, pp. 60f).
However, this is not the case. Newtonian mechanics and thermodynamics
are exact in their respective domains. We shall discuss in Sect. 2.3 in which
sense the terms “approximation” and Smolensky’s “precise description”
should be applied.

Instead of talking about microlevels and macrolevels, Atmanspacher
and Primas (2003) suggested to distinguish ontic and epistemic descrip-
tions of physical systems. Epistemic descriptions refer to the “knowledge
that can be obtained about an ontic state” (Atmanspacher and Primas
2003, p. 305, see also Atmanspacher 2000, p. 465), whereas ontic descrip-
tions are complete with respect to a formal model. It turns out that
ontic descriptions of a classical dynamical system refer to the individual
points in phase space, whereas epistemic descriptions refer to statistical
states as probability distributions over the phase space and to epistemic
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observables partitioning the phase space into sets of epistemically equiva-
lent (ontic) states. Both aspects are closely connected because epistemic
observables are defined by a certain statistical reference state providing a
particular context (Primas 1990, beim Graben and Atmanspacher 2004).

Ontic and epistemic states do generally not coincide with the micro-
and macrostates of statistical physics and thermodynamics (Atmanspacher
2000, p. 467). However, for classical dynamical systems, the individual,
ontic states can be identified with the thermodynamic microstates. Let
us consider the microcanonical ensemble of thermodynamics. Here the
energy partitions the phase space of the system into (infinitely many)
manifolds of epistemically equivalent states. The statistical state of the
microcanonical ensemble for a given energy E is then defined by the uni-
form p.d.f. over the surface assigned to the energy E. With respect to
this distribution, all states of the manifold contribute the same statistical
weight to the ensemble average of every observable. This means that any
two states x,y belonging to the microcanonical distribution are statisti-
cally equivalent. A macrostate of the microcanonical ensemble is therefore
a set of energy-epistemically equivalent states which are also statistically
equivalent.

Let f be an epistemic observable that induces a finite partition Pf =
A1, . . . , AI (I ∈ N) of the phase space X into I classes Ai of states which
are epistemically equivalent with respect to f . Then we can assign I
macrostates ρi to the cells Ai of the partition, which support the corre-
sponding uniform p.d.f.’s. For any macrostate ρi we can define epistemic
observables gi(x) = 1 if x ∈ Ai, and gi(x) �= 0, gi(x) �= 1 elsewhere.
It then turns out that ρi is an eigenstate of gi. On the other hand, by
construction ρi is no eigenstate of any other gj (j �= i). Therefore two
gi, gj are incompatible. Are the two observables gi, gj also maximally in-
compatible and hence complementary? The answer is: not necessarily,
because any individual point in phase space defines an ontic state which
is an eigenstate of any observable. However, complementary observables
might appear in complex nonlinear dynamical systems where ontic states
are unphysical states in the sense that they are not epistemically accessible
(beim Graben and Atmanspacher 2004).

2.3 Symbolic Dynamics

So far we have discussed instantaneous descriptions of physical sys-
tems. Next we consider their dynamics. Let us restrict ourselves to time-
discrete dynamical systems. Their flow is generated by a map Φ : X → X,
such that a present state x(t) ∈ X at time t is mapped onto its successor
x(t+1) = Φ(x(t)). A (discrete) trajectory is then obtained by iterating the
map Φ recursively: Φt = Φt−1 ◦ Φ. The map Φ may be invertible or not.
While beim Graben and Atmanspacher (2004) discuss the special case of
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invertible flows, we shall here consider non-invertible flows since the exam-
ples presented in Sect. 3 belong to this class. Figure 1 shows an example
for such a system where the point sequence (x(0),x(1),x(2),x(3),x(4)) is
a trajectory with initial condition x(0) ending in an asymptotically stable
fixed point attractor x(4).
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Figure 1: The origin of a symbolic dynamics: The phase space X (the
unit square) is partitioned into two disjoint subsets A and B. A tran-
sient trajectory of a time-discrete dynamical system, the point sequence
(x(0),x(1),x(2),x(3),x(4)), ending in the fixed point x(4), is mapped
onto a sequence of letters “BBABA”.

Let f be an observable of the system. We define a continuous mea-
surement of duration T by recording a time series of observations {f(t) =
f(Φt(x(0))) | t = 0, . . . , T − 1} starting with an initial condition x(0).
From this record we may formally regain a point sequence in phase space
{x(t) = f−1(f(t)) | t = 0, . . . , T − 1} provided that the observable f is
one-to-one. A possible set of initial states Φ−t(f−1(f(t))) is then ob-
tained by determining the pre-image under the flow in phase space. For
invertible systems this set contains only a single state x(0). This is the
proper meaning of a precise description of a dynamical system, where
a complete description is required to enable a pointwise evaluation of
states. Thus, a precise description refers to a complete description, which
in turn depends on a formal description of a system: Smolensky’s criteria
for incompatibility are not independent. In the generic case of incom-
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plete descriptions given by epistemic observables or non-invertible flows,
the pre-images of the measured values of a time series under f are non-
singleton sets rather than individual points, {X(t) = f−1(f(t)) ⊂ X | t =
0, . . . , T − 1}, and their pre-images under the flow are also non-singleton
sets, Φ−t(f−1(f(t))) ⊂ X.

Returning to the epistemic observable f inducing a finite partition
Pf = A1, . . . , AI (I ∈ N) of the phase space X, we introduce the ba-
sic concepts of symbolic dynamics. Measuring f in the state x(0) ∈ X
yields the value f(0) of the time series, which is the same for all states
y that are epistemically equivalent to x(0) with respect to f . That is,
measuring f in state x(0) tells that x(0) belongs to a particular class
Ai0 . After one time step, the measurement of f yields that the sys-
tem is in state Φ(x(0)) ∈ Ai1 . Thus, we know that the initial state
was in Ai0 ∩ Φ−1(Ai1). A continuous measurement of f leads then to
the estimation x(0) ∈ ⋂T−1

t=0 Φ−t(Ait
). Given the partition Pf , the sets

⋂T−1
t=0 Φ−t(Ait

) also partition the phase space for all combinations of the
Ait

and for all measurement durations T . The resulting partitions are
called refinements of Pf .

By fixing the sequence of cells that are visited by a trajectory of
the system, we obtain a one-sided sequence s = ai0ai1ai2 . . . of symbols
ait

∈ Af where the index set of the partition is interpreted as a finite
alphabet Af of cardinality I. The initial state x(0) is thereby mapped
onto a string s. Figure 1 shows how a binary partition of the unit square
X into the cells A and B leads to a sequence of symbols “BBABA” cor-
responding to the sets the trajectory (x(0),x(1),x(2),x(3),x(4)) is ex-
ploring. Symbolic dynamics deals with the statistical and grammatical
properties of such strings (Lind and Marcus 1995, Hao 1989). The map-
ping π : x(0) �→ s is generally not invertible. That is, the pre-image of a
string s, π−1(s), is a non-singleton set R rather than a point. These pre-
images provide the finest partition of X that is induced by the observable
f and its corresponding partition Pf . The open sets of this maximal re-
finement constitute a contextual topology introduced by Pf (beim Graben
and Atmanspacher 2004, Atmanspacher 2000).

Particular dynamical systems possess generating partitions whose re-
finements allow to approximate the individual points in the phase space
by continuous measurements with arbitrary precision. Their contextual
topologies are thus identical with the topology of the phase space (up
to sets of vanishing probability measure). For generating partitions, the
map π−1 is invertible such that individual points in phase space are epis-
temically accessible by continuous measurements with increasing duration
(beim Graben and Atmanspacher 2004). Moreover, the phase space dy-
namics and the symbolic dynamics are topologically equivalent for generat-
ing partitions. Beim Graben and Atmanspacher (2004) propose to call two
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different partitions compatible if they are both generating. If they are not
generating, they are called incompatible. Compatible partitions allow for
both compatible and incompatible observables, while incompatible par-
titions allow only for incompatible and complementary (i.e. maximally
incompatible) observables since not every eigenstate of an observable is
epistemically accessible by the dynamical refinement of the partition un-
der continuous measurement (beim Graben and Atmanspacher 2004).

Non-generating partitions have topologies which are coarser grained
than the topology of the phase space, so that they are incompatible with
each other and incompatible with the structure of the phase space. This is
presumably the property of incompatibility which Smolensky had in mind
when he stated the incompatibility of the symbolic and the subsymbolic
paradigms.

3. Implementations

The preceding section presented Smolensky’s criteria for a “complete,
formal, and precise description” of a dynamical system. We saw that
a formal description defines the relevant variables from an ontic point
of view, thus giving rise to a complete description. Correspondingly, a
complete description is necessary for an ontic evaluation of observables,
thereby defining a precise description. If there is an ontic and an epistemic,
contextual account of a dynamical system, the epistemic description is
neither complete nor precise with respect to the ontic description unless
a generating partition is introduced by the chosen epistemic observables
such that the two descriptions are compatible. In this case it is possible to
approximate the ontic states with arbitrary precision by longer and longer
lasting continuous measurements, thus leading to a complete epistemic
description.

However, things become completely different if a new formal descrip-
tion is introduced also for the epistemic setup. Then one obtains a higher-
level relative ontology (Atmanspacher and Kronz 1999, Atmanspacher
and Primas 2003) where the formal model redefines the notions of com-
pleteness and precision. This is the case for the micro-macro relation
between quantum mechanics and Newtonian mechanics or between sta-
tistical physics and thermodynamics. Regarding the microtheories, both
macrotheories are approximations in the finer topologies. But their re-
spective formal frames define the domains in which the macrotheories are
complete and precise concerning the coarser contextual topologies. Con-
sider the microcanonical ensemble of thermodynamics again. A macrostate
is a uniform p.d.f. defined over an energy surface in the phase space.
From the ontic perspective of the time evolution of individual points, a
macrostate bears maximal uncertainty about a particular microstate. On
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the other hand, the evolution of p.d.f.’s considered as ontological objects
is governed by deterministic equations, thus leading to another complete,
formal description.

A similar micro-macro distinction can be applied to the conceptual
and the subconceptual levels describing particular connectionist dynam-
ical systems. Smolensky claimed that a complete, formal, and precise
macrolevel description would be an implementation of a system with a
complete, formal, and precise microlevel description (Smolensky 1988,
p. 59). He called two descriptions of a connectionist system incompat-
ible if one is complete, formal and precise at the subconceptual level, but
the other one is only approximative at the conceptual level. The recently
proposed approaches to optimality theory (Prince and Smolensky 1997)
and non-monotonic logic (Blutner 2004) must be referred to as compatible
implementations of PSS’s by dynamical systems. By contrast, the next
subsections will present three examples of nonlinear dynamical systems
which are instances of implementations of PSS’s and cannot be described
by incompatible accounts in the sense of Fodor and Pylyshyn (1988) or
Smolensky (1988). However, their epistemic descriptions will be incom-
patible regarding the coarse-grained topologies.

3.1 Example 1

Figure 2 shows five time series observed by a numerical experiment
with a nonlinear dynamical system. The initial conditions were randomly
chosen according to a uniform probability distribution defined over a re-
gion of the phase space which is actually the unit square depicted in Fig. 1.
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Figure 2: Five time series of an observable f(x) for the same dynamical
system as in Fig. 1, starting at randomly prepared initial conditions. The
horizontal bold line denotes a partitioning of the range of the observable
into the sets A : f(x) < 0.5 and B : f(x) ≥ 0.5 which are the images of
the cells A and B from Fig. 1 under the action of f .
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One recognizes that all time series become eventually constant, thus
indicating the existence of asymptotically stable fixed point attractors.
The value zero in the range of the observable seems to correspond to an
unstable, repelling fixed point since the dotted line diverges exponentially
from the baseline. A symbolic dynamics can be introduced by any parti-
tion of the range of the observable (beim Graben et al. 2000). The theory
of nonlinear time series analysis provides heuristics to find appropriate
partitions (Wackerbauer et al. 1994, Daw et al. 2003). A first attempt
might be a partition into cells of equal size. In this sense, the bold hori-
zontal line in Fig. 2 denotes a threshold splitting the unit interval into the
sets A = [0, 0.5] and B =]0.5, 1]. The pre-images of these sets under the
particular observable are those regions in Fig. 1 that are labeled by the
symbols A and B. Figure 3 visualizes the symbolic dynamics of 50 time
series (epochs) starting with randomly prepared initial conditions where
black pixels denote the symbol “A” and white pixels denote the symbol
“B”. The first five sequences are the encoded time series shown in Figure
2.
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Figure 3: Symbolic dynamics of an ensemble of 50 time series (epochs)
with random initial conditions of the same partitioned dynamical system
as in Figs. 1 and 2. Here, black pixels denote the symbol “A” and white
pixels “B”. The first five sequences are those of Figure 2.

It is easy to recognize that all initial conditions are situated in region
B of Figs. 1 and 2, respectively. After the first iteration all states are
spread over the whole phase space but concentrated in region A after the
third iteration. The fourth iteration yields a random distribution of sym-
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bols again. Finally, after the fifth step, the states reach their attractors
either in A or in B. The particular context chosen by this partition is
not very instructive yet. We shall consider this example as one of many
possible physical contexts which might provide insight into the underlying
dynamics.

Figure 4 unveils what is actually going on. The dynamics is defined by
a piecewise affine linear map that comprises parallel translations, stretch-
ing and squeezing along the coordinate axes of the phase space. The
domains of definition are the six rectangles, denoted A to F in Fig. 4.
The flow acts in the following way: the map is simply the identity at the
white rectangles B and C, which are thereby mapped onto themselves,
respectively. The light-gray rectangles A and D are expanded in both
directions and shifted such that their bottom-left vertices coincide with
the origin of the unit square. Their images are the whole unit square. The
dark-gray rectangles E and F are shifted and squeezed along the x-axis,
thereby being mapped onto the anthracite rectangles contained in C and
D, respectively.
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Figure 4: The intended partition of the dynamical system from Figs. 1–
3 is given by the six rectangles A to F . The dynamics is defined by
piecewise affine linear maps at these domains.

From Fig. 4 we can deduce that the dynamics is asymptotically mul-
tistable. All states will be transiently rinsed into the rectangles B or C
either, where each state is a fixed point. Therefore, all sequences of the
six symbols A to F become eventually periodic either ending with B or



42 beim Graben

C. It follows that the system does not have a generating partition (for a
proof see the Appendix), hence all particular partitions are incompatible
with each other. The symbolic dynamics is not topologically equivalent
with the ontic dynamics of individual states.

The partition displayed in Fig. 4 is called the intended partition since
it was explicitly used to define the piecewise affine linear dynamics. How-
ever, there is a further reason for this notion. Beim Graben et al. (2004a)
have shown that the system presented in Figs. 1–5 has a straightforward
formal interpretation as a PSS. The transients of the dynamics from time
step 0 to 3 describe the state transitions of a pushdown automaton pro-
cessing a sentence of a formal language (Hopcroft and Ullman 1979). This
interpretation is not comprised at the ontic level of individual points hop-
ping through the unit square. One has to consider rectangular macrostates
moving around the phase space. Figure 5 shows the example underlying
all previously discussed illustrations.
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Figure 5: The transient evolution of an epistemic state of uniformly dis-
tributed initial conditions supported by the rectangle R(0) through the
unit square. The sequence of rectangles (R(0), R(1), R(2), R(3)) corre-
sponds to the processing of a “sentence” by a pushdown automaton ac-
cording to a particular context-free grammar. The last state R(3) is the
accepting state of the automaton.

We see that initial conditions which were randomly drawn from a uni-
form distribution supported by rectangle R(0) are successively mapped
onto states whose envelopes are the rectangles (R(1), R(2), R(3)). In the
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intended symbolic dynamics, this macroscopic trajectory is encoded by
the sequence “FDAε” where ε denotes the final state R(3) covering the
whole unit square. Another representation of this sequence is more in-
structive. Projecting the cells of the partition onto the coordinate axes
yields pairs of symbols “0”, “1”, and “2” which partition the x- and the
y-axis. Then the sequence “FDAε” becomes “((2, 1), (1, 1), (0, 0), (ε, ε))”
where we have replaced “ε” by the pair “(ε, ε)”. This symbolic trajectory
encodes both a constituental phrase structure tree and the parse of the
processing automaton (beim Graben et al. 2004a). The formal language
being processed is generated by a simple context-free grammar (Hopcroft
and Ullman 1979) “2 → 10” where “2” denotes the start symbol of the
grammar whereas “1” can be interpreted as the subject and 0 as the
predicate of a sentence. The initial macrostate encodes the state 0 of
the automaton having the start symbol “2” at the stack and the sentence
“10”, i.e. subject-predicate, at the input tape. In the first step the
parser “recognizes” the start symbol and “predicts” a subject according
to the grammar by expanding the start symbol into the sequence “10”.
Now, the leading symbols at the stack and at the input tape are both
“1” in state 1. The prediction was successful and the parser “attaches”
the predicted subject to the subject found in the input by canceling
both symbols from both tapes arriving in state 2. Here the parser finds
again an agreement between the predicted predicate at the stack and
the predicate provided by the input. A further attachment leads to the
accepting state 3 where both tapes are empty.

This example supplies indeed an implementation, namely a complete,
formal and precise conceptual and symbolic interpretation of a completely,
formally and precisely described nonlinear dynamical system. However,
the intended partition providing the symbol processing context is incom-
patible with any partition describing a physical context because none of
the partitions is generating. Moreover, the symbolic and the subsym-
bolic descriptions are incompatible either, because there is no topological
equivalence between them.

3.2 Example 2

My second example is adopted from Balkenius and Gärdenfors (1991)
(see also Gärdenfors 1994, Blutner 2004). Balkenius and Gärdenfors
(1991) discuss attractor neural networks (ANN) (Amit 1989) such as, e.g.,
Hopfield nets on an n-dimensional hypercube X = [0, 1]n as their phase
space, where a time-discrete flow Φ : X → X mediates the dynamics.
These connectionist dynamical systems are asymptotically (multi-)stable
such that a natural partition of the phase space X into the basins of at-
traction of the fixed point attractors exists. Again, these systems do not
possess generating partitions by virtue of the proposition proven in the
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Appendix. Hence, all particular partitions are incompatible with each
other and with the topology of the phase space.

Balkenius and Gärdenfors (1991) introduce a conceptual level by par-
ticular hypercubic partitions, called schemata. A schema is given by a
point a ∈ [0, 1]n. The schema is said to be accepted by another point
x ∈ [0, 1]n if xi ≥ ai for i = 1, . . . , n (Gärdenfors 1994). All accepted
states x of a given schema a constitute a macrostate (a “cone”) A ⊂ X
belonging to a partition Pa that is induced by the schema a. Among
schemata a partial ordering is introduced by the relation a � b if ai ≥ bi

for i = 1, . . . , n, meaning that the schema a is more specific than b.
There is a minimal schema 0 = (0, . . . 0) ∈ [0, 1]n and a maximal schema
1 = (1, . . . 1) ∈ [0, 1]n such that the set of schemata forms a lattice. The
respective lattice operations are given as (a � b)i = max(ai, bi) for the
conjunction and (a⊕b)i = min(ai, bi) for the disjunction of schemata a,b.
Finally, a complement can be introduced by (a∗)i = 1 − ai establishing a
De Morgan lattice as a provisional logic.

In order to define an inference relation, the dynamics has to be taken
into account. Passing a schema a to the flow as an initial condition yields
a trajectory of schemata a, Φ(a), Φ2(a), . . . , â ending at the attractor â.
However, the fixed point â is generally not more specific than the initial
condition a, in contrast to the intention of logical inference. Balkenius and
Gärdenfors (1991) remedy this obstacle by clamping the time evolution of
states. They introduce the clamped map Φa(x) = Φ(x)�a and determine
the fixed point x̂a = limt→∞ Φt

a(x). Then, by âa � b a non-monotonic
inference relation a � b is defined.

The latter example shows how the subsymbolic dynamics of an ANN
can be interpreted as a non-monotonic logic at a formal conceptual level
(Besnard et al. 2003). Again we have a formal, precise and complete
account at each level and, thus, an implementation of a PSS. However,
the symbolically interpreted epistemic states of the system belong to a
lattice of incompatible partitions. There is no topological equivalence of
the conceptual interpretation with the underlying dynamics.

3.3 Example 3

The concluding example brings us close to neurobiology. Coupled
Map Lattices (CML) (Kaneko 1993) are becoming more and more pop-
ular modeling tools in computational neuroscience. They are spatially
distributed lattices of n vertices, where each vertex k is occupied by a
time-discrete dynamical system, e.g. the logistic map, at the local phase
space Xk = [0, 1]. The dynamics of the vertices is governed by their
intrinsic flow Φ coupled to the states of particular other nodes (usually
nearest neighbors). The evolution equation is then given as xk(t + 1) =
(1 − ε)Φ(xk(t)) + (ε/m)

∑
(j,k) Φ(xj(t)). The sum extends over those m
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vertices j which are connected to vertex k (symbolically: (j, k)). The dy-
namics depends on two parameters, the coupling strength ε and a control
parameter r determining the flow Φ. For the logistic map, this dependence
is given by Φ(x) = rx(1 − x).

Atmanspacher and Scheingraber (2004) investigated the stability prop-
erties of such CMLs in the fully chaotic regime of the individual vertex
dynamics. The ordinary logistic map has a generating partition for r = 4
provided by the critical state xc = 0.5: A = [0, xc], B =]xc, 1]. There-
fore, the phase space X = [0, 1]n of the CML of uncoupled logistic maps
(ε = 0) is partitioned by xc = (0.5, . . . , 0.5) into hypercubes of equal size
representing a generating partition as well. The symbolic dynamics of the
CML can be regarded as a spatio-temporal pattern of “A”s and “B”s akin
to that of Figure 3.

Increasing the coupling strength ε, Atmanspacher and Scheingraber
(2004) have shown that a locally unstable fixed point x∗

k = (r − 1)/r at
each vertex becomes a global asymptotically stable fixed point for ε ≥ εc,
where the stabilization onset εc depends on the network architecture and
the updating procedure. If the coupling parameter is larger than this
critical threshold, all lattice vertices arrive after a short transient phase
at this attractor. Thus, the corresponding symbolic dynamics performs
a simple algorithm which brings each vertex into the eventually periodic
sequence of “B”s (or a white pixel in a visualization as in Fig. 3). Though
the formal, algorithmic interpretation of that system as symbol processing
is not very instructive, it shares an important property with the previous
examples. After the global stabilization onset of the CML the system
does not have a generating partition any more since it is asymptotically
stable. We have a system which changes its coarse-grained contextual
properties so drastically that any compatibility between partitions and
the topological equivalence of any partition and the ontic dynamics is lost
after the stabilizing bifurcation.

4. Discussion

The present study contributes to the long-lasting controversy between
classicists defending the Physical Symbol System (PSS) hypothesis of cog-
nitive science on the one hand and the connectionist/dynamicist camp on
the other, arguing that symbolic computation is a higher-level interpreta-
tion of low-level nonlinear dynamics. Proponents of both lines of thought
reasoned that symbol processing and dynamics were incompatible, though
on different grounds. Classicists, such as Fodor and Pylyshyn, denied
that dynamical systems could be proper cognitive architectures of the
mind because these systems do not allow for combinatorial, constituental
syntax and semantics with their commonly accepted properties of produc-
tivity, systematicity, compositionality, and causal efficacy of constituents.
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However, they did not deny the possibility that symbolic processes are
implemented by connectionist or dynamical systems which is in fact a
necessary prerequisite for any physical symbol system.2 The best known
example is the implementation of a von Neumann machine by a digital
computer. By contrast, connectionists such as Smolensky objected that
the concept of an implementation was not properly used by the classicists,
and that PSS’s and connectionist dynamical systems are incompatible be-
cause the former are not mere implementations of the latter, but rather
rough approximations.

I think that cognitive and computational neurosciences ought to seek
implementations of PSS’s by neurodynamical systems which are as for-
mal, precise and complete as possible in their proper domains. I criticized
Smolensky’s earlier position that such descriptions are only feasible at
the modeling instance. His definition of implementation entailed a cat-
egory mistake because he did not observe that the conceptual and the
subconceptual level of a system are treated by distinct formal accounts.

The three examples of implementations of PSS’s that I have supplied
bear a common resemblance. At the subconceptual level, the formal model
introduces an ontological stance defining the concepts of completeness
and precision. By partitioning the phase space of the ontic dynamics into
epistemic macrostates, a coarse-grained contextual topology is provided
through the maximal dynamically generated refinement of the partition.
Regarding the ontic description, the epistemic account is neither complete
nor precise and ontic states are only approximately accessible by epistemic
means. On the other hand, as soon as a formal description is introduced
at the conceptual level, this account determines a new relative ontology,
thereby redefining complete and precise descriptions in this frame of ref-
erence. Symbolic dynamics supplies the necessary tools for such a formal
treatment of epistemic states.

In the first example of Sect. 3.1, the intended partition of the unit
square enables the interpretation of the transient dynamics of symbolic
states as syntactic language processing. This is formally described by the
theory of pushdown automata (Hopcroft and Ullman 1979), thus leading
to an implementation of a PSS (in the sense of Smolensky) by a nonlin-
ear dynamics. Interestingly, due to the construction of the system’s flow,
constituents, namely the leading symbols at stack and input tape are in-
deed causally efficacious. Therefore, the system is actually more than a
mere implementation in the sense of Fodor and Pylyshyn. This holds for
a large class of such systems since Moore (1990) has proven that any Tur-
ing machine can be represented by a piecewise affine linear map acting at
the unit square. The second example presented in Sect. 3.2 reviews the
interpretation of particular macrostates of an attractor neural network

2This point was not correctly taken into account by Chalmers (1990).
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(ANN) in terms of non-monotonic logical reasoning. Again, a complete
and precise formal description at the conceptual level and therefore an
implementation according to Smolensky’s criteria is achieved. The last
example in Sect. 3.3 has no straightforward conceptual interpretation in
terms of cognitive models. It simply performs a painter’s work creating
a homogeneous stable spatial pattern. Its high-level dynamics allows for
a precise, complete and formal description, thereby providing an imple-
mentation of a simple PSS.

Furthermore, these examples illustrate that the concept of incompati-
bility has not been used appropriately by both classicists and connection-
ists. Two descriptions of a system are not simply incompatible if they
are not implementations of each other. By contrast, the concept of in-
compatibility deeply refers to a topology that is connected to the chosen
description. Originally introduced into quantum mechanics, where observ-
ables are incompatible if they are not precisely measurable simultaneously,
beim Graben and Atmanspacher (2004) have generalized this concept to
epistemic observables and partitions even of classical dynamical systems.
They call two partitions compatible if they are arbitrarily well refinable by
continuous measurements, eventually reaching the topology of the under-
lying ontic description. In this case, when the partitions are generating,
an epistemic account yields approximately complete and precise descrip-
tions of the system. Non-generating partitions are incompatible. They
generate different topologies by the process of dynamic refinement which
are coarser grained than the ontic topology. Systems with incompatible
partitions cannot be consistently described by a distinguished epistemic
account. Each conceptual and therefore epistemic description is princi-
pally different from any other. There is no lingua franca, no uniquely
determined common formal account feasible for such systems.

This is demonstrated by the three examples discussed. They have in
common that their dynamics is asymptotically stable, thereby prevent-
ing generating partitions. Example 3.1 allows for many physical con-
texts in terms of nonlinear data analysis corresponding to incompatible
partitions. Among them is the intended partition upon which the con-
struction of the dynamics relies. Only this particular partition allows for
the interpretation of the system’s behavior as language processing. The
second example (Sect. 3.2) introduces symbolic schemata as partitions
of the phase space of an ANN. These schemata, constituting a De Mor-
gan lattice as a provisional logic, are all incompatible with each other.
Moreover, no schema enables the approximation of individual activation
patterns accepting it because the dynamics is not generating and there-
fore not topologically equivalent with the structure of the phase space.
The last example (Sect. 3.3) illustrates that bifurcations in a nonlinear
dynamical system may destroy a unique formal description by creating a
host of incompatible epistemic descriptions.
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Finally we can conclude that Smolensky’s hypothesis (10) (Smolensky
1988, p. 7) has not to be rejected but rather to be adopted: “Valid connec-
tionist models are merely implementations, for a certain kind of parallel
hardware, of symbolic programs that provide exact and complete accounts
of behavior at the conceptual level.” Optimality Theory (OT; Prince and
Smolensky 1997) and the reconstruction of the non-monotonic logic calcu-
lus of Balkenius and Gärdenfors (1991) by Blutner (2004) actually provide
examples for such implementations.3 However, these symbol systems are
implemented by a symbolic interpretation of activation vectors in neural
networks. They are therefore described by the ontological stance of indi-
vidual points in phase space, which always allows for compatible descrip-
tions. Thus, OT and Blutner’s calculus must be regarded as compatible
implementations of PSS’s in the light of the appropriate definition of in-
compatibility. On the other hand, epistemic conceptual descriptions are
incompatible with the subsymbolic dynamics if its corresponding parti-
tions are not generating, thus preventing topological equivalence between
the conceptual and the subconceptual level accounts. Moreover, different
conceptual level descriptions will be incompatible with each other, hence
preventing the existence of one uniquely determined distinguished formal
account.

Appendix

Proposition. An asymptotically (multi-)stable dynamical system does not
possess generating partitions.
Proof. Consider a time discrete non-invertible dynamical system with
phase space X and flow Φ. This asymptotically (multi-)stable dynamical
system is naturally partitioned into the basins of attraction of its fixed
point attractors. Call this partition Pnat = {B1, B2, . . . } (it might be ei-
ther finite or infinite). Let x∗ ∈ X be an asymptotically stable fixed point
with basin of attraction Bk ∈ Pnat. Let P = {A1, . . . AI} be an arbitrary
finite partition of X such that x∗ ∈ A1 (possibly after a permutation of
the alphabet). Then, x∗ is mapped by the symbolic encoding π onto the
periodic sequence 1∞. Choose now a neighborhood Rx∗ of x∗ such that
Rx∗ ⊂ Bk. The whole set Rx∗ is thereby mapped by π onto the sequence
1∞. Hence Rx∗ ⊂ π−1(1∞). That is π−1(1∞) contains more than exactly
one element and π is therefore not invertible. Thus, P is not generating.

3Note that OT itself has been described as a family of non-monotonic logics by
Besnard et al. (2003.)
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