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Abstract

In 1972, Ernst Ulrich and Christine von Weizsäcker introduced
the concept of pragmatic information with three desiderata: (i)
Pragmatic information should assess the impact of a message upon
its receiver; (ii) Pragmatic information should vanish in the limits
of complete (non-interpretable) “novelty” and complete “confirma-
tion”; (iii) Pragmatic information should exhibit non-classical prop-
erties since novelty and confirmation behave similarly to Fourier
pairs of complementary operators in quantum mechanics.

It will be shown how these three desiderata can be naturally
fulfilled within the framework of Gärdenfors’ dynamic semantics of
Bayesian belief models. (i) The meaning of a message is its impact
upon the epistemic states of a cognitive agent. A pragmatic infor-
mation measure can then be quantified by the average information
gain for the transition from a prior to a posterior state. (ii) Total
novelty can be represented by the identical proposition, total con-
firmation by the logical consequence of propositions. In both cases,
pragmatic information vanishes. (iii) For operators that are nei-
ther idempotent nor commuting, novelty and confirmation relative
to a message sequence can be defined within Gärdenfors’ theory
of belief revisions. The proposed approach is consistent with mea-
sures of relevance derived from statistical decision theory and it
contains Bar-Hillel’s and Carnap’s theory of semantic information
as a special case.

1. Introduction

In his contribution to The Mathematical Theory of Communication,
Weaver described three levels of communication “procedures by which one
mind may affect another” (Shannon and Weaver 1949, pp. 95–96):

Level A. How accurately can the symbols of communication be
transmitted ? (The technical problem.)
Level B. How precisely do the transmitted symbols convey the de-
sired meaning ? (The semantic problem.)
Level C. How effectively does the received meaning affect conduct
in the desired way ? (The effectiveness problem.)
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By and large, these levels correspond to the semiotic dimensions discussed
by Morris (1955). The technical problem with noisy communication chan-
nels can be tackled by redundant codes that introduce correlations among
the elements (symbols) of the messages, i.e. by syntax. The semantic prob-
lem addresses correlations between the transmitted symbols and their
desired meanings, i.e. semantics. Finally, the effectiveness problem corre-
sponds to pragmatics, addressing relations between the symbols and their
impact upon the users.

Although it has been argued that Shannon’s theory of syntactic in-
formation were without any significance for the semantic and pragmatic
dimensions (see Gernert 2006 for a discussion), Weaver claimed (Shannon
and Weaver 1949, p. 98) that

the analysis at Level A discloses that this level overlaps the other
levels more than one could possible naively suspect. Thus the the-
ory of Level A is, at least to a significant degree, also a theory of
levels B and C.

It is the aim of the present study to argue in favor of this assertion.
Section 2 provides a brief tutorial on classical (Shannonian) information
theory and its applications. They include the approaches of Bar-Hillel
and Carnap (1953, 1964) and Crutchfield (1991, 1992) for theories of
semantic information and finally measures of utility and relevance that
were suggested as pragmatic information measures in the framework of
statistical decision theory (Polani et al. 2001, Weinberger 2002, van Rooij
2004, 2006).

Subsequently, Sect. 3 introduces the concept of pragmatic information
proposed by E.U. and C. von Weizsäcker (1972) and E.U. von Weizsäcker
(1974b) and further developed by C.F. von Weizsäcker (1974a, 1988),
Gernert (1985, 1996), Kornwachs and Lucadou (1982, 1985), and At-
manspacher and Scheingraber (1990). E. U. and C. von Weizsäcker (1972)
supplied three desiderata that should be obeyed by reasonable measures
of pragmatic information: (i) Pragmatic information should assess the
impact of a message upon its receiver; (ii) Pragmatic information should
vanish in the limits of complete novelty and complete confirmation; (iii)
Novelty and confirmation require a non-classical, “quantum-like” descrip-
tion in terms of incompatible observables. In order to meet these desider-
ata, dynamic semantics (Staudacher 1987, Groenendijk and Stokhof 1991,
Kracht 2002, Gärdenfors 1988, 1994) will be proposed as the appropriate
formal framework for describing meaning as transitions of cognitive states
in Section 4.

In Sect. 5, the theory of pragmatic information will be developed in
the suggested way. Section 6 presents two applications of the theory.
Firstly, Bar-Hillel’s and Carnap’s semantic information measure will be
derived. Secondly, the relation between pragmatic information in dynamic
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semantics and measures of relevance in statistical decision theory will be
elucidated. Section 7 provides a concluding summary.

2. Information Theory

In Shannon’s theory (Shannon and Weaver 1949), a discrete informa-
tion source is given by a probability space X endowed with a probability
distribution ρX : X → [0, 1], such that pi = ρX(Ai) is the probability
of the elementary event Ai ∈ X . The discrete set X is considered as
a repertoire of possible messages with pi being the probability that the
message Ai is emitted. A communication system consists of the sender
X , a receiver, also regarded as an information source with repertoire Y
and probability distribution ρY : Y → [0, 1], and a noisy channel given by
a stochastic transfer function F : X → Y.

2.1 Syntactic Information

The aim of Shannon’s theory of communication is to describe the optimal
way of information transmission from the sender X to the receiver Y via
the noisy channel F . Communication can be optimized by redundantly
decoding the messages from X in such a way that a disturbed message
Bi = F (Ai) has the same code as the original Ai. Optimization refers to
maximizing some cost function, namely the Shannon information.

The information content of a message Ai emitted by X is given by

I(Ai) = − log pi (1)

where the base of the logarithm can be chosen arbitrarily. Usual choices
are ld ≡ log2 yielding information measured in bits, or logM for a fi-
nite set of messages X with M elements. The latter choice normalizes
the information of uniformly distributed messages (pi = 1/M) to unity:
− logM (1/M) = logM M = 1. In the sequel we shall always consider
information measures normalized to the range [0, 1] in the latter way.

The average information of a message sent by X is given by its entropy

H(X ) =
∑

Ai∈X
ρX(Ai) I(Ai) = −

∑
Ai∈X

pi log pi , (2)

where the usual convention pi log pi = 0 if pi = 0 is applied. Similarly, one
can compute the average information of the received messages as H(Y).
Since entropies are normalized by the choice of the base of the logarithm
in Eq. (1), the quantity

G(X ) = 1 − H(X ) (3)
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measures the average certainty of a message and is called redundancy.
G(X ) is sometimes denoted as negentropy (C.F. von Weizsäcker 1988).

In order to address the communication system as a whole, one consid-
ers the product space X ×Y with the associated joint probability distrib-
ution ρXY : X ×Y → [0, 1]. The original probabilities are regained as the
marginal distributions

ρX(Ai) =
∑

Bj∈Y
ρXY (Ai, Bj)

ρY (Bi) =
∑

Ai∈X
ρXY (Ai, Bj) .

Equation (2) provides the joint entropy H(X ×Y) from which the condi-
tional entropies

H(X|Y) = H(X × Y) − H(Y) (4)
H(Y|X ) = H(X × Y) − H(X ) (5)

are obtained. The quantity H(X|Y) measures the average uncertainty of
the sender about whether or not the received message is known, thus it
measures the ambiguity of the code. H(X|Y) is called equivocation. On
the other hand, H(Y|X ) measures the average uncertainty of the receiver
about whether or not the emitted message is known.

The central quantity in Shannon’s theory is the entropy of the sender
reduced by the equivocation (or, vice versa, the entropy of the receiver
reduced by the conditional entropy H(Y|X )),

R(X ,Y) = H(X ) − H(X|Y) = H(Y) − H(Y|X ) . (6)

Originally, R(X ,Y) was dubbed “rate of information transmission” by
Shannon and Weaver (1949), but it is nowadays referred to as the mutual
information between two arbitrary information sources X ,Y in multivari-
ate statistics. The maximum of R(X ,Y) across all possible codes defines
the channel capacity and therefore the optimal coding for the communi-
cation.

Another important concept refers to information gain. Consider an
information source X with an unknown probability distribution ρ. If an
observer has the hypothesis that the messages from X are distributed
according to another distribution ρ0, he can determine the information
gain ∆I(Ai) for the message Ai ∈ X , when he becomes convinced that ρ
is indeed the true distribution, as

∆I(Ai) = − log ρ0(Ai) − (− log ρ(Ai)) = log
ρ(Ai)
ρ0(Ai)

. (7)
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Averaging ∆I(Ai) over all messages Ai ∈ X with respect to the true
distribution ρ yields the so-called Kullback-Leibler information as the av-
erage information gain (Kullback and Leibler 1951, Kullback 1968) be-
tween the distributions ρ, ρ0,

K(ρ, ρ0) =
∑

Ai∈X
ρ(Ai)∆I(Ai) =

∑
Ai∈X

ρ(Ai) log
ρ(Ai)
ρ0(Ai)

. (8)

Computing the Kullback-Leibler information for the product space X ×
Y under the initial hypothesis of stochastic independence, ρ0(A,B) =
ρX(A)ρY (B), yields exactly the mutual information R(X ,Y).

2.2 Semantic Information

Bar-Hillel and Carnap (1953, 1964) applied Shannon’s information the-
ory to a logical calculus with a finite number of individual terms and
predicates. They defined the informativity of a proposition by the num-
ber of logically equivalent expressions, or formulas. The informativity
should be large when only a small number of equivalent formulas exists.
A proposition should be less informative if there is a large number of
logical equivalents.

Let A be a logical formula in Bar-Hillel’s and Carnap’s framework
and m(A) = #{P |P ↔ A} the number of formulas P that are logically
equivalent with A (denoted as P ↔ A). Assuming that these formulas
are equally likely, their probability is p(A) = 1/m(A). The informativity
of A (see also van Rooij 2006) is then given by its Shannon information
according to Equation (1):

I(A) = − log p(A) = log m(A) . (9)

The applicability of this approach is restricted by the constraint that the
number of logical formulas must be finite.

Another proposal to measure the semantic content of a message, or
its meaning, was suggested by Crutchfield (1991, 1992). Consider an ob-
server watching the output of an information source X , namely a sequence
s = Ai1Ai2Ai3 . . . (cf. C.F. von Weizsäcker 1988, Chap. 5). Crutchfield
assumed that the observer has a mental model of the ongoing process in
form of a stochastic automaton (Crutchfield 1992, Fu 1974). Such an au-
tomaton is a tuple Σ = (X , Q, T, q0) where X is the alphabet of visible
messages that are to be described, Q is a set of n internal states, and
T : X → [0, 1]n

2
maps each symbol A ∈ X to an n × n stochastic ma-

trix T (A) = (pij(A)) such that pij(A) is the probability for the transition
from state qj ∈ Q to state qi ∈ Q accepting the symbol A from the input.
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Since T (A) is a stochastic matrix, the columns of T (A) add to unity for
all messages A ∈ X :

∑
j

pij(A) = 1 . (10)

Moreover, q0 ∈ Q is an initial state with a certain probability that char-
acterizes complete ignorance of the observer.

Crutchfield (1992, p. 23) restricted his discussion to stochastic au-
tomata where each transition is uniquely labeled by its initial and final
states qj , qi and the accepted message A. However, this assumption to-
gether with the normalization constraint Eq. (10) yields a deterministic
automaton with pij(A) = 1. Therefore, Crutchfield’s exposition would
require another normalization condition such as

∑
A∈X

∑
j pij(A) = 1

which is not appropriate for a sequence-accepting automaton but rather
for a sequence-producing automaton.

Deviating from Crutchfield (1992), let us consider a stochastic au-
tomaton Σ as the mental model of an observer being in a current state
qj ∈ Q as defined above, and receiving the message A from the informa-
tion source X . Then, the meaning of A in the given state qj is the set of
possible destination states {qi ∈ Q|pij(A) > 0}. In this case, its semantic
information is the Shannon entropy of the transition

Θj(A) = −
∑
qi∈Q

p′ij(A) log p′ij(A) , (11)

where

p′ij(A) =
pij(A)∑

qi∈Q pij(A)

are renormalized transition probabilities.
According to Eq. (11), the semantic information of the symbol A is

zero if all p′ij(A) = 0 for the given starting state qj , i.e. there is no allowed
transition from qj accepting the symbol A. In this case, the mental model
Σ appears to be inadequate and should therefore be revised. On the other
hand, if there is only one transition from qj to a destination state qi, then
pij(A) = 1 and Θj(A) = 0 since A was anticipated by the model Σ with
certainty.

In Crutchfield’s semantics of automata, messages act as operators upon
the states of an automaton and the meaning of a symbol is the result of
such an operation. Additionally, meaning and semantic information are
contextually defined with respect to both the valid mental model Σ and
the current state qj of the observer (cf. Staudacher 1987, Atmanspacher
et al. 1992). We shall see in Sect. 4 that these assumptions actually form
the core of dynamic semantics.
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2.3 Pragmatic Information

Any measure of pragmatic information content must be contextually
defined (Atmanspacher et al. 1992) with respect to a given agent and to
her beliefs, desires and goals at a given instance of time. This is similar
to the discussion of Crutchfield’s theory of semantic information where an
observer is in a particular state qj of a particular mental model Σ. The
appropriate framework of such an account is statistical decision theory.1

Statistical decision theory describes the possible decisions and actions
of an agent in a particular epistemic state. Let X be the agent’s state
space, x ∈ X an epistemic state with probability ρ(x) and Y the set
of decisions (van Rooij 2004). Decisions are evaluated according to a
utility function u : X × Y → R, such that u(x, y) is the utility of the
decision y in state x. An optimal decision y∗ ∈ Y maximizes the utility:
u(x, y∗) ≥ u(x, y) for all y ∈ Y .

One important problem in statistical decision theory is to find an ap-
propriate utility function for rationally and consistently (or honestly) be-
having agents. This problem was solved by Bernardo (1979) and by von
Weizsäcker (1988), together with Drieschner, using information theory.
They proved that the best utility function is simply a linear function of
the information content (Eq. (1)) of the agent’s epistemic states. The ex-
pected utility for an ensemble of alternative decisions hence equals Shan-
non’s entropy in Eq. (2).

This result was applied in linguistics by van Rooij (2004) (see also
van Rooij 2006) in order to measure the relevance of questions. Van
Rooij (2004) found that the utility value of a particular answer q′ to a
question Q′ is given by the Kullback-Leibler distance (Eq. (8)) between
the a priori distribution of the answers ρ(q) to another question Q and the
distribution conditionalized with respect to the given answer q′, ρ(q|q′).
Then, the mean utility value of the question Q′ is obtained by its mutual
information with respect to Q,

R(Q,Q′) =
∑
q∈Q

∑
q′∈Q′

ρ(q ∧ q′) log
ρ(q ∧ q′)
ρ(q)ρ(q′)

,

where q ∧ q′ denotes the logical conjunction of q and q′ (see Sect. 4).
A similar result was obtained by Polani et al. (2001) who quantified

the relevance of an agent’s epistemic states x ∈ X for the optimal decision
problem by the mutual information (Eq. (6)) between the distribution of
states ρ(x) and a uniform distribution of optimal actions y ∈ Y ∗(x) given
by

1A different approach by Frank (2003) rests on algorithmic complexity. Two mes-
sages are called pragmatically equivalent if they conduct the same behavior of their
recipient. The pragmatic information of a message is then the length of the shortest
message in the class of all pragmatically equivalent messages.
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ρ(y|x) =
{

1/#(Y ∗(x)) : y ∈ Y ∗(x) ,
0 : otherwise .

Finally, the approach of Weinberger (2002) provides a measure of prag-
matic information of a message ensemble by the mutual information be-
tween the messages and the decisions of the agent after she has received
them.

3. Three Desiderata for Pragmatic Information

E.U. and C. von Weizsäcker (1972) formulated three desiderata that
should be fulfilled by any reasonable measure of pragmatic information;
see also E.U. von Weizsäcker (1974). Let us briefly discuss these require-
ments and how they were resumed by other authors in the following sub-
sections (for a comprehensive review see Gernert 2006).

3.1 Impact upon a Recipient

First, pragmatic information should assess the impact of a message
upon its receiver (E.U. and C. von Weizsäcker 1972, p.541, translation by
the author):

Pieces of information . . . are intended to act. By definition they act
upon their receivers and change them informationally. In particu-
lar, after the arrival of a message the receiver’s expectation proba-
bility for a related message will usually not be the same as before.

This idea was taken up by Kornwachs and Lucadou (1985, p. 86) who
stated that

... the action, provoked by information in a system is not only
a simple reaction – it can alter the receiving system as a whole
without direct reactions: thus it can alter the potential dispositions
of a system.

Later, Gernert (1996, p. 150) specified this claim saying that “pragmatic
information is characterized by the property to alter the structure and/or
the behavior of the receiving system”. Following Gernert (1996, 2006),
structural or behavioral changes of the receiver can be described by graph
grammars.

3.2 Novelty and Confirmation

The second desideratum states that pragmatic information consists of
two components, novelty and confirmation. E.U. and C. von Weizsäcker
(2006) write:
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We proposed that meaningful information consists of two mutually
complementary components, novelty and confirmation ... novelty
relates to entropy, confirmation to negentropy.

Identifying novelty with Shannon entropy H as a measure of ran-
domness and confirmation with negentropy or redundancy, G = 1 − H
(Eq. (3)), pragmatic information should behave similar to a measure of
complexity that depends non-monotonically on randomness and is glob-
ally concave (Atmanspacher et al. 1992). The relationship between prag-
matic information and complexity was also addressed by E.U. and C. von
Weizsäecker (1972) and E.U. von Weizsäcker (1974). Gernert (1996, 2006)
suggested to consider novelty and confirmation as independent variables.

An early, though rather problematic, attempt to measure novelty N
and confirmation C is due to Kornwachs and Lucadou (1982). They
formulated for the first time the so-called “product formula” for pragmatic
information:

S = N · C , (12)

resembling an ostensible measure of complexity suggested by Shiner et al.
(1999) that was criticized by Crutchfield et al. (2000).

Considerable progress was made by Gernert (1996, 2006) who sug-
gested to measure novelty as the dissimilarity between a message and its
recipient’s actual knowledge. By contrast, confirmation has to be mea-
sured by the dissimilarity between the message and the agent’s expecta-
tions or goals. Similarity can be measured by a metric defined on sets of
graphs generated by a graph grammar. Expressing the agent’s knowledge
in terms of statistical decision theory as an epistemic state, one can employ
Shannon’s information theory for the evaluation of similarity. This issue
will be reconsidered in Sect. 5 in the framework of dynamic semantics.

Another way for measuring the pragmatic information content of a
message by a resulting change of efficiency of the receiver’s behavior was
originally proposed by Gernert (1985) and subsequently applied to a phys-
ical system by Atmanspacher and Scheingraber (1990). Let ηprior be the
efficiency of the receiver before and ηpost after the reception of a message.
The pragmatic information can then be assessed by

S =
ηpost − ηprior

ηpost
. (13)

This definition can be related to the “computational mechanics” of sto-
chastic automata. Crutchfield (1992) defined the efficiency of a model
description Σ as

η =
||Σ|| + ||E||

||s|| . (14)

Here, ||s|| is the length of the optimal symbolic encoding s of the pat-
tern to be modeled, ||Σ|| is the length (the algorithmic complexity) of a



178 beim Graben

description of the stochastic automaton Σ reproducing s, and ||E|| is the
length of the description of the residual error not accounted for by the
model Σ. From the point of view of pragmatic information, ||Σ|| assesses
confirmation while ||E|| measures novelty.

3.3 Non-Classicality

A “formal speculation” led E.U. and C. von Weizsäcker (1972) and
E.U. von Weizsäcker (1974) to the idea that novelty and confirmation
could be considered as Fourier pairs in the sense of complementary ob-
servables requiring a non-classical, quantum-like treatment. Their argu-
ment was as follows. If total novelty is represented by a delta function
signal at some time t0, its Fourier transform is a uniform distribution over
all frequencies. In the same picture, complete confirmation would be a
constant signal for all times, and its Fourier transform a delta peak at a
certain frequency f0. Therefore, total novelty and complete confirmation
are a Fourier pair. In quantum theory, complementary observables are
such Fourier pairs, obeying Heisenberg’s uncertainty relations. (However,
the converse is usually not the case: Fourier pairs are not necessarily
complementary in the sense of quantum theory.)

This speculation was further strained by Kornwachs and Lucadou
(1982, 1985) in order to justify Eq. (12). If novelty and confirmation
were complementary observables they should fulfill an uncertainty rela-
tion, where the pragmatic information S in Eq. (12) provides the lower
bound of the product of N and C. A non-classical description of prag-
matic information for cognitive operations was later suggested by Gernert
(2000) and Atmanspacher and Filk (2006). In Sect. 5.3 we shall come back
to this point.

4. Dynamic Semantics

Statistical decision theory describes the behavior of a cognitive agent
in a particular epistemic state that can change under the influence of
received messages. This resembles the description of an observer watch-
ing an information source and building computationally efficient (mental)
models from those observations. Both Crutchfield (1992) and Gernert
(2000) proposed that the meaning of a message is described by an opera-
tion on the epistemic state space of the agent.

In this Section the approach of dynamic semantics will be suggested
as a unifying account for these proposals. According to Groenendijk and
Stokhof (1991),

the meaning of a sentence does not lie in its truth conditions, but
rather in the way it changes (the representation of) the information
of the interpreter. The utterance of a sentence brings us from a
certain state of information to another one.
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Similarly, Kracht (2002, p. 217) states that

dynamic semantics is called ‘dynamic’ because it assumes that the
meaning of a sentence is not its truth condition but rather its impact
on the hearer.

In the following, let us briefly review Gärdenfors’ theory of belief mod-
els (Gärdenfors 1988, 1994) as a formal framework for a theory of prag-
matic information that fulfills the three desiderata of E.U. and C. von
Weizsäcker (1972). Mathematically, Gärdenfors’ theory is an application
of category theory and can be easily recast in terms of a generalized quan-
tum theory (Atmanspacher et al. 2002, Römer 2004).

4.1. Belief Models

The generalized framework of Atmanspacher et al. (2002) considers a
set X as a state space and functions from X to X in Mor(X). Particular
functions from a countable, discrete subset A ⊆ Mor(X) are called ob-
servables. Observables can be concatenated, i.e. iteratively invoked, such
that (A ◦ B)(x) = A(B(x)) = A(y) if y = B(x) for all x ∈ X. The
product AB = A ◦B of observables is associative: A(BC) = (AB)C. At-
manspacher et al. (2002) supplied a number of axioms for the properties
of observables. The set A becomes a monoid if it is closed with respect
to the concatenation product and contains a neutral element 	 such that

	 ◦ A = A ◦ 	 = A (15)

for all A ∈ A. A subset P ⊂ A is a commutative sub-monoid if all
elements in P commute with each other:

P = {A,B ∈ A|AB = BA} . (16)

Projectors are idempotent observables A ∈ P obeying

A2 = AA = A . (17)

In Gärdenfors’ dynamic semantics, the set X is regarded as the space
of epistemic states of a particular cognitive agent. Elements x, y, z ∈
X are called epistemic states, or simply belief states. In the sequel, we
shall refer to observables U, V ∈ A ⊆ Mor(X) as to epistemic operators.
Commutative projectors A,B ∈ P ⊆ A are called propositions. Their
product

A ∧ B = AB = BA = B ∧ A (18)

is called the conjunction of A and B.
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An important notion in Gärdenfors’ theory is that of acceptance. A
proposition A ∈ P is said to be accepted in state x ∈ X (or, likewise, x
accepts A) if

A(x) = x . (19)

This means that the state x is a fixed point of A. Since all propositions
are idempotent, the following holds. Let y = A(x) for some x ∈ X, then
A(y) = A(A(x)) = A2(x) = A(x) = y, i.e. after applying A to any state
x the result y = A(x) accepts A. Thus, Eq. (19) has the straightforward
interpretation that an agent, who does not believe that A is true in state
x, does believe so after being informed by the proposition A.

Another important notion, logical consequence, is defined as follows:
A proposition B is a logical consequence of a proposition A if

B ∧ A = A ∧ B = A . (20)

In this case, y = A(x) entails B(y) = B(A(x)) = A(x) = y, such that
B is accepted whenever A is accepted in an epistemic state (but not vice
versa).

Gärdenfors introduced other axioms defining logical connectives such
as negation (¬A) or disjunction (A ∨ B), which give rise to an inter-
pretation of the theory in terms of propositional logic. A map I, called
interpretation function, assigns to each logical formula ϕ a proposition
Iϕ = A ∈ P such that I is a homomorphism with respect to the con-
nectives. Since a proposition A = Iϕ is an operator A : X → X, we
immediately obtain that the meaning of a sentence (a formula of classi-
cal propositional logic) is its associated epistemic operator acting on the
belief states of a cognitive agent.

A set of commutative projectors P acting on an agent’s epistemic
state space X that obeys Gärdenfors’ axioms for the suggested logical
interpretation constitutes a belief model (X,P) (Gärdenfors 1988, 1994).

4.1. Bayesian Belief Models

So far we have considered a deterministic setup where a proposition
A ∈ P is either accepted or not accepted with certainty in an epistemic
state x ∈ X. In case of acceptance, we have the fixed point equation (19),
A(x) = x. This can be equivalently expressed by assigning a probability
distribution of the propositions to state x such that

ρx(P ) =
{

0 : P (x) �= x
1 : P (x) = x

(21)

is the probability that a proposition P is accepted in state x. This deter-
ministic description is generalized by allowing for arbitrary distributions
ρ(P ) ∈ [0, 1], where ρ(P ) = 1 if P is accepted with certainty by the dis-
tribution ρ and ρ(P ) = 0 if ¬P is accepted with certainty by ρ. In all
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other cases, 0 < ρ(P ) < 1 means that P is believed to be true with prob-
ability ρ(P ). Thus, the state x is replaced by a map ρ : P → [0, 1] and
the state space X is replaced by the set of all probability distributions
S = {ρ|ρ : P → [0, 1],

∑
P∈P ρ(P ) = 1}.2

In Sect. 4.1 we have modeled propositions as operators mapping epis-
temic states to other epistemic states. In the probabilistic (Bayesian)
description, states are probability distributions. Again, propositions can
be interpreted as operators (Gärdenfors 1988, Chap. 5): Let A ∈ P be a
proposition and ρ : P → [0, 1] be a probability distribution over P such
that ρ(A) > 0 and

∑
P∈P ρ(P ) = 1. We define the image of ρ under the

impact of A, Aρ =: ρA, by the conditionalization

ρA(P ) =
ρ(P ∧ A)

ρ(A)
=: ρ(P |A) (22)

for all P ∈ P. In the transformed state ρA, A is accepted to be true:
ρA(A) = ρ(A|A) = 1.

A Bayesian probabilistic belief model is a pair (S,P) where (i) P is
a set of propositions from a belief model (X,P) and propositions A ∈
P act on statistical states according to Eq. (22), and (ii) S is a set of
probability distributions such that X is identified with the pure states in
S (Gärdenfors 1988, Williams 1980).

After conditionalization with respect to A, only the proposition A and
its logical consequences (i.e. all P ∈ A with PA = A) are accepted in the
state ρA. As ρA(B) = 0 for AB �= A, the denominator of Eq. (22) vanishes
for conditionalizing with respect to new evidence for B. Therefore, a
model for belief revision is required.

4.3. Revision-Extended Belief Models

Belief models are monotonic, i.e. propositions which are already ac-
cepted remain accepted during the dynamics of epistemic states. This
is a consequence of the commutativity of propositions and can be easily
checked: Let A be accepted in state x (i.e. A(x) = x) and let B(x) = y,
such that B is learned during the transition x → y. Then A(y) =
A(B(x)) = (A ∧ B)(x) = (B ∧ A)(x) = B(A(x)) = B(x) = y, which
means that A and B are both accepted in the new state y.

Such an account is not appropriate when mental models have to be
revised either by evidence against convictions or to improve their effi-
ciency (Crutchfield 1991, Gernert 2000). While propositions are commu-
tative operators, this is generally not the case for belief revision processes.

2This construction is well-known in algebraic quantum theory, where the space
of statistical states contains the positive, normalized, and linear expectation value
functionals. Applying such a functional to a projector P yields the likelihood to observe
the eigenvalue “true” for P . The pure states in S obey Eq. (21).
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Gärdenfors (1988) models belief revisions by means of a further set of epis-
temic operators R ⊂ A. He defines a revision-extended belief model as a
triple (X,P,R) where (i) (X,P) is a belief model, (ii) P ⊆ R, and (iii) for
each A ∈ P there is an A∗ ∈ R\P which describes the revision dynamics
by further axioms.

In order to illustrate this dynamics, let us consider an agent in a belief
state x that accepts proposition A =: “the moon consists of Gorgonzola”.
Its revision is A∗ =: “the moon does not consist of Gorgonzola”. Another
proposition might be B =: “the moon is a big rock”. Since x accepts
A, the application of B, B(x), leads to the absurd state o ∈ X where
all propositions are accepted (Gärdenfors 1988), including BA =: “the
moon is a big rock consisting of Gorgonzola”. This state is invariant under
the revision A∗, hence (A∗B)(x) = o. On the other hand, the product
BA∗ applied to x yields B(y) where y = A∗(x) accepts the revision of
A. Therefore, BA∗(x) �= o because BA∗, “the moon does not consist of
Gorgonzola, it is rather a big rock”, can be consistently accepted. Thus,
A∗B �= BA∗, i.e. belief revisions and propositions do not commute – they
are incompatible or even complementary.

Revision-extended belief models can also be defined for the Bayesian
account by introducing a revision function ∗ : P → R which assigns to
a proposition A ∈ P its revision A∗ ∈ R. However, the revision A∗ of A
can only act on a state ρ according to the conditionalization rule Eq. (22)
if ρ(A) > 0, i.e. if A is consistent with the belief expressed in ρ. If A
is not consistent with ρ, A∗ must act on ρ differently. This difference is
captured by the following concepts (Gärdenfors 1988, Chap. 5).

A set O(ρ) associated to a statistical state ρ ∈ S is called an ordinal
family for ρ, if there is a well-ordering ≺ on O(ρ) such that (i) ρ =
min O(ρ) and ρ⊥ = max O(ρ), and (ii) for all A ∈ P there is some ρa ∈
O(ρ) such that ρa(A) > 0 and ρa �= ρ⊥, if not ¬A = 	. Here ⊥ denotes
the contradiction and the neutral element 	 is interpreted as a tautology
of the belief model.

Given such an ordinal family O(ρ), the revision A∗ acts on ρ as

ρA∗ := ρ∗A (23)

where ρ∗ is the first element ρa of O(ρ). Thereby, revision is reduced
to conditionalization (although a new probability distribution ρ∗ is used
instead of ρ with ρ∗(A) > 0). It is clear that ρ∗ = ρ = min O(ρ) for
ρ(A) > 0, which means that the effect of a revision A∗ equals the effect of
a proposition A if A is consistent with the epistemic state ρ. If more than
one well-ordering ≺ is possible on O(ρ), the revision function defined by
Eq. (23) is not uniquely determined. There exist many different revision
functions for one belief model. A proper choice of one of them depends on
contexts such as the epistemic entrenchment of propositions (Gärdenfors
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1988, Chap. 4; see also Goodman 1983), the agent’s preferences and her
readiness to give up a belief, her goals in certain circumstances, and other
pragmatic conditions.

5. Theory of Pragmatic Information

It will now be demonstrated how the three desiderata for measures
of pragmatic information (E.U. and C. von Weizsäcker 1972, E.U. von
Weizsäcker 1974) can be met in the framework of dynamic semantics.
For this purpose we concentrate on behavioral changes of an agent and
disregard structural changes.

5.1 Impact upon a Recipient

First of all, the meaning of a message is its impact upon the belief
states of a cognitive agent: Messages act as operators on the agent’s
epistemic state space. For the Bayesian account, where belief states are
given by probability distributions over propositions, a received proposition
A transforms an a priori distribution ρ into an a posteriori distribution
ρA according to the conditionalization rule Eq. (22). The impact of that
message can therefore be assessed by its average information gain, i.e. by
the Kullback-Leibler information Eq. (8),

K(ρA, ρ) =
∑
P∈P

ρA(P ) log
ρA(P )
ρ(P )

. (24)

However, one has to observe that the denominator of Eq. 22 does not
vanish. Therefore, it is plausible to suggest

Sρ(A) =
{

K(ρA, ρ) : ρ(A) > 0
0 : ρ(A) = 0 (25)

as a measure of the pragmatic information of a proposition A in the belief
state ρ of a particular agent. This definition is obviously contextual as
required by Gernert (1996, 2006).

5.2 Novelty and Confirmation

In order to measure novelty and confirmation, Gernert (1996, 2006)
proposed to determine the similarity between the message and the agent’s
epistemic state or her goals and desires, respectively. Dynamic semantics
supplies a direct way for characterizing at least total novelty and complete
confirmation. A proposition A will be called totally novel if there is no
belief state ρ that can be conditionalized by A. In other words, A acts on
all states as the tautology A = 	, yielding for all ρ ∈ S:

Aρ = ρ . (26)
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Inserting Eq. (26) into Eqs. (24) and (25), one obtains Sρ(A) = 0,
i.e. the pragmatic information of a totally novel message, that cannot be
understood by the agent, vanishes. On the other hand, complete con-
firmation can easily be defined by the concept of logical consequence in
Eq. (20). A proposition B will be called completely confirmed if B is the
logical consequence of another proposition A. In that case, we have

(ρA)B(P ) =
ρA(PB)
ρA(B)

=
ρ(PBA)

ρ(A)
· ρ(A)
ρ(BA)

=
ρ(PBA)
ρ(BA)

= ρBA(P ) ,

and

ρBA(P ) =
ρ(P (BA))

ρ(BA)
=

ρ(PA)
ρ(A)

= ρA(P ) ,

since BA = A, and hence SρA
(B) = 0. As a result, the pragmatic infor-

mation of a completely confirming message vanishes as well.
The requirement that pragmatic information should be non-negative

and globally concave as a function of randomness is met by the properties
of the Kullback-Leibler information (Kullback 1968, Chap. 2.3).

5.3 Non-Classicality

Since total novelty or complete confirmation are too restrictive for
useful applications of the theory,3. one has to look for notions of novelty
and confirmation relative to a given information source, or to a string
of concatenated messages (E.U. and C. von Weizsäcker 1972, E.U. von
Weizsäcker 1974, C.F. von Weizsäcker 1988, Kornwachs and Lucadou
1982).

Let s =
∏

k Ak be a finite or infinite sequence of propositions, called
a text. Consider for instance the sequence s = ABBA of propositions
A,B ∈ P from a Bayesian belief model. Texts have to be read from right
to left (the Arabian way) because the rightmost proposition acts first on
a current epistemic state. Since propositions are commuting projectors,
s = ABBA = AABB is the same text as before. Therefore, novelty
cannot be defined relative to a text s of propositions, because there is no
“first” proposition in s. After reordering s to s = AABB, the idempotence
property of propositions yields s = AABB = A2B2 = AB. Hence, there
is also no relative notion of confirmation with respect to s.

In order to define relative novelty and relative confirmation we, thus,
have to consider epistemic operators that are not propositions. One ex-
ample is provided by the belief revisions encountered in Sects. 4.2 and
4.3. For each proposition A ∈ P there is a revision A∗ ∈ R usually not
commuting with other propositions.

3E.U. and C. von Weizsäcker (1972, p. 544) refer to an agent who does not under-
stand at all as a “hermeneutic monster”.
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Another important class of examples are anaphers as discussed by
Staudacher (1987), Groenendijk and Stokhof (1991), and Kracht (2002).
Consider the three propositions A =: “John sat at the table”, B =:
“George came in”, and C =: “he was wearing a hat”. Then the pronoun
“he” has conflicting interpretations for the conjunctions ABC and BAC,
respectively (Frisch et al. 2004). Anaphers of this kind are described,
either by predicate logic with anapher (Staudacher 1987) or by dynamic
predicate logic (Groenendijk and Stokhof 1991, Kracht 2002), as non-
commutative contextual operators.

Therefore we have to extend our theory of pragmatic information to
arbitrary epistemic operators U, V ∈ A with P ⊂ R ⊂ A such that U2 �=
U and UV �= V U . How do such operators act on epistemic states ? For
propositions we have the conditionalization rule Eq. (22), which applies
also to belief revisions since the revision function ∗ : A �→ A∗ is defined by
a “quantum leap” in the state space, where ρA∗ = ρ∗A and ρ∗ is the smallest
member of the contextually given ordinal family O(ρ) with ρ∗(A) > 0. To
be as conservative as possible, we assume that any epistemic operator V
with ρ(V ) > 0 can conditionalize a belief state by

ρV (U) =
ρ(UV )
ρ(V )

=: ρ(U |V ) (27)

if the normalization constraint
∑
U∈A

ρ(UV ) = ρ(V ) (28)

holds. Note that the ordering in the nominator of Eq. (27) must be
carefully observed.

Now it is convenient to introduce two quantities that are formal ana-
logues to the variance and the covariance. We define the operator variance

vaxρ(U) = ρ(U2) − ρ(U)2 (29)

and the conditional operator covariance

coxρ(U |V ) = ρ(UV ) − ρ(U)ρ(V ) . (30)

both for a given belief state ρ and for U, V ∈ A. Note that ρ is a proba-
bility distribution over epistemic operators and not an expectation value
functional, and that epistemic operators belong to an abstract monoid
and not to an algebra. Therefore, Eqs. (29) and (30) define neither a
variance nor a covariance in the sense of linear statistics.

Because epistemic operators are not linear maps, the operator variance
and the conditional operator covariance can assume arbitrary signs. Only
for propositions A,B ∈ P we have vaxρ(A) = 0 due to idempotence and
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coxρ(A|B) = coxρ(B|A) due to commutativity. Moreover, if proposition
B is the logical consequence of proposition A, we obtain coxρ(B|A) =
ρ(A) · ρ(¬B).

What is the meaning of these general operators ? Let us first consider
an operator with

ρU (U) > ρ(U) . (31)

Such an operator supports itself by self-confirmation. It can be called
conviction because the agent’s probability of believing U increases under
repetition of U . Computing the operator variance of U using Eq. (31)
yields

vaxρ(U) > 0 . (32)

As the counterpart to Eq. (31), consider now

ρU (U) < ρ(U) . (33)

An agent receiving U over and over again becomes more and more suspi-
cious about its credibility. One may call U propaganda in this case. From
Eq. (33) it follows that

vaxρ(U) < 0 . (34)

Now we are finally able to define relative novelty and confirmation.
An operator U ∈ A is called novel relative to an operator V ∈ A and an
epistemic state ρ if

coxρ(U |V ) = 0 . (35)

Correspondingly, an operator U ∈ A is called relatively confirmed by an
operator V ∈ A in an epistemic state ρ if

coxρ(U |V ) > 0 . (36)

Additionally, the notion of relative disconfirmation is introduced by

coxρ(U |V ) < 0 . (37)

In this case, U ∈ A will be considered disconfirmed by V ∈ A in the state
ρ. These definitions are justified by

coxρ(U |V ) = 0 ⇐⇒ ρV (U) = ρ(U)

for novelty, and

coxρ(U |V ) ≶ 0 ⇐⇒ ρV (U) ≶ ρ(U)

for confirmation or disconfirmation, respectively.
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Relative novelty as just defined corresponds closely to the total nov-
elty defined in Sect. 5.2 because it does not alter the epistemic state upon
conditionalization. Therefore, it provides vanishing pragmatic informa-
tion Sρ(V ) = 0 where the sum in Eq. (24) extends over all epistemic
operators

K(ρV , ρ) =
∑
U∈A

ρV (U) log
ρV (U)
ρ(U)

. (38)

The sum in Eq. (38) can be decomposed into three contributions for
novelty Nρ(V ), confirmation Cρ(V ), and disconfirmation, Dρ(V ),

Nρ(V ) =
∑

U :cox(U |V )=0

ρV (U) log
ρV (U)
ρ(U)

Cρ(V ) =
∑

U :cox(U |V )>0

ρV (U) log
ρV (U)
ρ(U)

Dρ(V ) =
∑

U :cox(U |V )<0

ρV (U) log
ρV (U)
ρ(U)

for ρ(V ) > 0, such that Sρ(V ) = Nρ(V ) + Cρ(V ) + Dρ(V ). Obviously,
Nρ(V ) = 0 since ρV (U) = ρ(U) for all U ∈ A. This is at variance with
the product formula Eq. (12) of Kornwachs and Lucadou (1982) which,
in our terminology, would read Sρ(V ) = Nρ(V ) · Cρ(V ).4

6. Applications

The theory of pragmatic information introduced above has two obvi-
ous applications. First, it allows us to derive Bar-Hillel’s and Carnap’s
theory of semantic information as a special case (Bar-Hillel and Carnap
1953, 1964). Second, one can demonstrate its consistency with statisti-
cal decision theory and its suggested measures of relevance (Polani et al.
2001, Weinberger 2002, van Rooij 2004, 2006).

6.1 Semantic Information

In order to derive Bar-Hillel’s and Carnap’s concept of semantic in-
formation, consider a Boolean algebra P consisting of only two epistemic
operators, P = {	,⊥}, where 	 denotes the tautology and ⊥ the contra-
diction. Let

ρ(	) = β; ρ(⊥) = 1 − β (39)

4The role of disconfirmation was not discussed by Kornwachs and Lucadou (1982).
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be an a priori probability distribution over P. Conditionalization with 	
yields the a posteriori state

ρ�(	) = 1; ρ�(⊥) = 0 . (40)

Using Eqs. (24) and (25), the pragmatic information of 	 is

Sρ(	) = − log β = I(	) (41)

which expresses the same situation as Eq. (9).

6.2 Measures of Relevance

Basically, the suggested measure of pragmatic information for a mes-
sage is the expected information gain associated with the transition of
an agent’s Bayesian belief states induced by the reception of the message.
Similar measures were suggested by van Rooij (2004) and Williams (1980).
As measures of relevance, Polani et al. (2001), Weinberger (2002), and
van Rooij (2004) suggested the mutual information between all random
events that are relevant for the epistemic state of an agent.

The expectation value of Sρ(V ) over all operators is given by

Sρ =
∑
V ∈A

ρ(V )Sρ(V ) =
∑

U,V ∈A
ρ(UV ) log

ρ(UV )
ρ(U)ρ(V )

(42)

which is simply the mutual information between two operators in A.

7. Summary

This study resumes a theory of pragmatic information originally pro-
posed by E.U. and C. von Weizsäcker (1972) and E.U. von Weizsäcker
(1974) and further developed by C.F. von Weizsäcker (1974, 1988), Gern-
ert (1985, 1996), Kornwachs and Lucadou (1982, 1985) and Atmanspacher
and Scheingraber (1990). E.U. and C. von Weizsäcker (1972) formulated
three desiderata to be met by a reasonable measure of pragmatic infor-
mation. (i) Pragmatic information should assess the impact of a message
upon its receiver. (ii) In the limits of non-interpretable total novelty and
complete confirmation, the pragmatic information should vanish. (iii)
Novelty and confirmation behave as Fourier pairs of complementary op-
erators, so pragmatic information should exhibit non-classical properties.

The first desideratum was previously addressed by approaches from
computational mechanics (Crutchfield 1991, 1992) and statistical decision
theory (Polani et al. 2001, Weinberger 2002, van Rooij 2004). Within the
unifying framework of dynamic semantics (Staudacher 1987, Groenendijk
and Stokhof 1991, Kracht 2002, Gärdenfors 1988, 1994), the meaning of
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a message is its impact upon the space of epistemic states of a cognitive
agent (a similar demand was required by Gernert (2000)). Thus, prag-
matic information is a contextual notion. It refers to a particular agent in
a particular belief state (Gernert 1996, 2006, Atmanspacher et al. 1992,
1997, Atmanspacher and Wiedenmann 1999).

The dependence of pragmatic information on novelty and confirmation
is related to various measures of complexity (Grassberger 1986, Crutch-
field and Young 1989, Wackerbauer et al. 1994, Badii and Politi 1997).
Pragmatic information vanishes for total novelty (randomness) and for
complete confirmation (regularity) and is globally concave for intermedi-
ate values of randomness. If the pragmatic information value of a message
is defined by its Kullback-Leibler information, these properties do natu-
rally hold. Moreover, since the average pragmatic information is given
by the mutual information between messages, this measure is closely re-
lated to measures of complexity suggested by Saparin et al. (1994), Quian
Quiroga et al. (2000, 2002), Badii et al. (1991), and Shalizi et al. (2004).

A classical description of epistemic operators in dynamic semantics
prevents defining novelty and confirmation relative to a text or an informa-
tion source. Therefore, belief revisions, convictions, propaganda, anaphers
and other cognitive operators (Goodman 1983, Gärdenfors 1988, 1994,
Gernert 2000, Staudacher 1987, Groenendijk and Stokhof 1991, Kracht
2002, and Atmanspacher and Filk 2006) must be taken into account for a
proper treatment of pragmatic information. These operators are generally
non-commutative and, therefore, incompatible or even complementary.

The proposed theory is consistent with measures of relevance derived
from statistical decision theory (Polani et al. 2001, Weinberger 2002,
van Rooij 2004) and it contains Bar-Hillel’s and Carnap’s theory of se-
mantic information (Bar-Hillel and Carnap 1953, 1964) as a special case.
The application of the theory to examples from computational mechanics
(Crutchfield 1991, 1992), to the determination of pragmatic information
due to efficiency changes (Gernert 1985, Atmanspacher and Scheingraber
1990, Crutchfield 1992) is left open for future research.

Further developments might combine Gärdenfors’ revision-extended
Bayesian belief models (Gärdenfors 1988), which actually provide in-
stances of propositional (or intuitive) logics with more elaborated accounts
(Staudacher 1987, Groenendijk and Stokhof 1991, Kracht 2002) supplying
the full power of predicate logics. In this prospect, the proposed theory of
pragmatic information could become a promising tool for relevance theory
and experimental pragmatics.
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